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1. INTRODUCTION

Suffix sorting is the task of lexicographically ordering all the suffixes of a string
and is the computational bottleneck in a number of important applications.
Perhaps most notable of these is the construction of the suffix array data struc-
ture, proposed by Manber and Myers [1993] as a space-efficient alternative to
the suffix tree. When combined with relatively small auxiliary information, the
suffix array can provide efficient and often optimal solutions to many prob-
lems involving pattern matching and pattern discovery in large strings, such
as those arising in computational biology [Abouelhoda et al. 2004]. More re-
cently, suffix arrays have become the basis for a variety of succinct full text
indexes [Ferragina and Manzini 2000; Sadakane 2002; Grossi and Vitter 2005;
Mäkinen and Navarro 2005]. While these structures are still experimental, the
resource cost of suffix-sorting will undoubtedly be a hurdle to their wide-scale
adoption.

Another important application of suffix sorting is the Burrows–Wheeler
transformation (BWT) [Burrows and Wheeler 1994]. The BWT is a reversible
permutation of the characters of a string, which enables very powerful loss-
less compression, and is the basis for practical compression tools such as bzip2
[Seward 2004] and szip [Schindler 2002].

In a suffix-sorting algorithm, we require the following qualities:

1. Speed. Obviously, we would like the suffixes to be sorted as quickly as pos-
sible (within certain constraints, such as finite memory). A useful suffix–
sorting algorithm should be largely resistant to frequent repeated pat-
terns in the input, which would otherwise necessitate many character
inspections.

2. Small working space. Small space requirements are important because they
reduce the burden of programs on the underlying system and allow larger
texts to be treated in memory. Manzini and Ferragina [2004] coin the term
“lightweight” to refer to suffix-sorting algorithms with (relatively) small
space requirements, less than 6n bytes. This space is accounted for by the
suffix array (4n bytes), the input string (n bytes for ASCII symbols), and
some extra working space (<n bytes).

3. Sensitivity to alphabet. One of the factors most often neglected by suffix-
sorting algorithms is the size of the alphabet, �. Ideally, the algorithm should
be independent of �, but failing that should show a graceful degradation of
performance as � grows. Many algorithms assume that |�| ≤ 256, includ-
ing some of the fastest known suffix sorters [Manzini and Ferragina 2004;
Schürmann and Stoye 2005], which rely on |�|2 being a manageable size.
While this is fine for the common case that the input is ASCII text, or can
be treated as byte-wise data, it is infeasible for many other situations. For
example, word-based BWT requires suffix–sorting with alphabets between
20,000 to 100,000 symbols [Moffat and Isal 2005] and Asian newspapers
and books commonly contain over 10,000 distinct symbols [Vines and Zobel
1998]. In both these contexts, algorithms containing |�|2 terms would be
rendered unusable.
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In this paper, we describe a novel algorithm that addresses the above issues.
In fact, we introduce several algorithms, putting a basic approach through
several versions to arrive at our best algorithm. Our main idea is to break the
suffixes into groups, assign ranks to the suffixes in each group in lexicograph-
ical order, and then use these ranks to subsequently speed the assignment of
ranks to other suffixes. When the algorithm completes, every suffix has been
assigned a unique lexicographic rank, enabling the suffix array or the BWT to
be computed.

Extensive experiments in a variety of real world contexts show our approach
is most often faster than the previous best known algorithms, even when the
input contains many repeated patterns. Further, our algorithms require little
more than 4n + zn bytes of working space, including space for the suffix array
and input string, where z is the number of bytes required per input symbol.
Thus, in the common case that |�| ≤ 256, our approach requires around 5n
bytes, similar to the most memory-concise algorithms known. We point out
that our algorithms are “practical” ones and throughout we avoid any formal
analysis of their asymptotic behavior other than stating now (what we believe
is) a loose �(n2logn) bound.

Section 2 sets notation and definitions used throughout and Section 3 reviews
previous work. We then introduce our algorithms in Section 4 and describe
equally important algorithmic engineering issues in Section 5. Our experiments
are described in Section 6 and results presented in Section 7, with conclusions
and reflections offered in Section 8.

2. DEFINITIONS AND NOTATION

Let � be a constant, indexed alphabet consisting of symbols σ j , j = 1, 2, . . . , |�|
ordered σ1, σ2, . . . , σ|�|. Essentially, we assume that � can be treated as a se-
quence of integers whose range is not too large. We will be usually interested
in applications with |�| ∈ 0..255 and sometimes |�| ∈ 0..65536, where each
symbol requires one or two bytes of storage, respectively. We refer to pair of
consecutive symbols as a bigram.

Throughout, we consider a finite, nonempty string x = x[0..n] = x[0]x[1] . . .

x[n] of n + 1 symbols. The first n symbols of x are drawn from � and comprise
the actual input. The final character x[n] is a special “end of string” character,
$, defined to be lexicographically smaller than any other character in �. We
assume that n < 232, implying that an integer in the range 0..n can be stored
in 4 bytes. For i = 0, . . . , n, we write x[i..n] to denote the suffix of x of length
n − i, that is, x[i..n] = x[i] x[i + 1] · · · x[n]. For simplicity, we will frequently
refer to suffix x[i..n] simply as “suffix i.”

We are interested in computing the suffix array of x which we write SAx or
just SA. The suffix array is an array SA[0..n], which contains a permutation
of the integers 0..n, such that x[SA[0]..n] < x[SA[1]..n] < · · · < x[SA[n]..n].
Stated another way, SA[ j ] = i iff x[i..n] is the j th suffix of x in ascending
lexicographical order (lexorder). We also define the inverse suffix array ISA[0..n]
such that ISA[i] = j , iff SA[ j ] = i. Thus, ISA[i] provides the lexicographic rank
of x[i..n] in constant time.
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Finally, the Burrows–Wheeler transformation bwt[0..n] of x[0..n] is a string
defined by SA. Specifically, bwt[i] = x[SA[i] − 1], unless SA[i] = 0, in which
case bwt[i] = $.

3. EXISTING APPROACHES TO SUFFIX SORTING

Over the past 15 years, many suffix-sorting algorithms have been proposed—a
recent survey paper counts a dozen distinct approaches [Puglisi et al. 2006].

In its most basic form suffix-sorting is string sorting. The suffixes are treated
as independent strings and sorted using one of the many sort routines tailored
for strings [McIlroy et al. 1993; Bentley and Sedgewick 1997; Andersson and
Nilsson 1998; Sinha and Zobel 2004]. The difficulty of suffix-sorting for a string-
sorting routine is captured by the average longest common prefix (LCP) of the
string, defined by [Sadakane 1998] as follows

Average LCP = 1
n − 1

n−1∑

i=1

lcp(SA[i], SA[i + 1])

where lcp( j , k) gives the longest common prefix of suffixes j and k. When the
average LCP of a string is small, direct string sorting gives an acceptable per-
formance [Larsson and Sadakane 1999]. However, as the average LCP grows,
custom suffix-sorting algorithms that exploit, in some way, the relationships
between suffixes can be many times faster.

Since 2003, several algorithms have been available to sort suffixes in �(n)
time, independent of � [Ko and Aluru 2003; Kärkkäinen and Sanders 2003; Kim
et al. 2003]. While these algorithms are important theoretically, their known
implementations are not competitive with supralinear algorithms, in practice,
being much slower and requiring two to three times more memory [Puglisi
et al. 2005]. The remainder of this section highlights salient features of the
more prominent, practical algorithms, particularly, those related to our new
approach. For more details and other algorithms we refer the reader to Puglisi
et al. [2006].

3.1 Two Stage

Algorithm two stage [Itoh and Tanaka 1999] uses a counting sort to logically par-
tition the SA space into |�| groups, with the ith group containing the suffixes
having first character σi. Each group is further partitioned, the first portion
containing type X suffixes and the second containing type Y suffixes. Type X
suffixes have prefix σ j σk such that σ j > σk . Type Y have σ j ≤ σk . When the
suffixes of a group are in lexorder, type X suffixes always come before type Y suf-
fixes. The key observation Itoh and Tanaka make is that once all the groups
of type Y suffixes are sorted, the order of the type X suffixes is implied. More
precisely, with the type Y suffixes sorted (with a string sorting algorithm), algo-
rithm two stage makes a single pass over SA and for each suffix i encountered,
if suffix i − 1 is of type X, then it should be moved the current front of its group
in SA and the group front is incremented. In this way, the type X suffixes at
least are sorted in O(n) time.
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3.2 Prefix Doubling

The prefix-doubling technique was first applied to suffix-sorting by Manber
and Myers [1993], inspired by the earlier work of Karp et al. [1972] in string
matching. The most efficient implementation is that of Larsson and Sadakane
[1999].

Generally, the approach works in rounds—at the beginning of the round h,
the suffixes are sorted on their 2h−1 prefix in SAh with corresponding ranks
in ISAh. It is then observed that a sort using the integer pairs (ISAh[i], ISAh
[i+h]) as keys, i+h ≤ n, computes a 2h-order of the suffixes i (suffixes i > n−h
are necessarily already fully ordered).

The two main implementations of the prefix-doubling approach differ pri-
marily in their application of the above observation. Manber and Myers do
an implicit 2h-sort by performing a left-to-right scan of SAh that induces the
2h-rank of SAh[ j ]h, j ∈ 0..n. On the other hand, Larsson and Sadakane ex-
plicitly sort each h-group using the ternary-split quicksort (TSQS) of Bentley
and McIlroy [1993]. Both approaches require 8n bytes of working space. Prefix-
doubling sorters have the advantage of being alphabet independent and taking
O(n log n) time, in the worst case.

3.3 Copy and Variants

Seward [2000] describes an important heuristic algorithm for suffix-sorting
called copy. The main idea bears a resemblance to two stage. Algorithm copy
initially sorts the suffixes into 1- and 2-groups, based on their first two charac-
ters (using a counting sort). 1-Groups refer to contiguous portions of the suffix
array, where suffixes share the same first character and 2-groups (“contained”
in 1-groups) refer to contiguous portions sharing the same first two characters.
Seward sorts the 1-groups in order of smallest to largest (i.e., those containing
least suffixes to those containing the most). Let Gλ denote the 1-group whose
member suffixes all start with the letter λ ∈ �. When Gλ is completely sorted,
by passing back over the portion of SA containing Gλ (now in order) for each
suffix i encountered, the order of the suffixes in 2-group prefixed x[i − 1]λ can
be induced. As sorting of 1-groups proceeds, ever more 2-groups will be already
ordered, allowing the sort routine to skip those portions of the 1-group. Seward
shows how the sorting of 1-groups can be made still more efficient by avoiding
the sorting of suffixes in Gλ prefixed λλ. If such suffixes are left until after the
other members of Gλ are sorted, their order can also be induced. This ability of
copy to deal with long runs of identical characters efficiently gives it a distinct
advantage over two stage, which has no such mechanism.

It is worth noting that copy was intended for use in a character-based BWT
setting, where it is assumed |�| ≤ 28. This assumption keeps the space re-
quired for the |�|2 buckets reasonable. If, however, |�| = 216, the memory
requirements for the algorithm would increase dramatically, making the al-
gorithm impractical, in some applications. This weakness is inherited by al-
gorithms which extend copy. Several very fast suffix sorters are based on
copy, namely, cache [Seward 2000], deep-shallow (ds) [Manzini and Ferragina
2004], and bucket pointer refinement (bpr) [Schürmann and Stoye 2005]. These
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algorithms all layer techniques on copy to help when the sort depth (or average
lcp) of a group of suffixes becomes large.

Algorithm cache maintains an array C[0..n − 1] of integers, initially all 0.
When suffix i is known to be in its final place, k, in SA we know that suffix is
ranked k among all suffixes and place the most significant 16 bits (or, alterna-
tively, 8 bits) of k in C[i]. Later, if we are comparing suffixes j and k having
x[ j ] = x[k], we then compare C[ j + 1] and C[k + 1], and a difference gives us
the correct order. If C[ j +1] = C[k +1], we then inspect x[ j +1] = x[k +1] and
if they are equal then we compare C[ j + 2] = C[k + 2], and so on. Of course,
the possibility of equal C values arises, because we are only caching the most
significant portion of each rank. This truncation of ranks means only an extra
2n bytes is required to store C (or 1n if only 8 bits are used).

Algorithm ds is probably the fastest suffix sorter available for real-world
inputs with � ≤ 256. The philosophy of ds is to treat suffixes having small lcp
differently from those having large lcp. The 1-groups are sorted with multikey
quicksort (MKQS) [Bentley and Sedgewick 1997] to depth 256 (small lcp) or
until the size of the group is smaller than a predefined constant, at which point
it completes the sort using a combination of sophisticated heuristics.

Algorithm bpr is a very recently proposed variant of copy that blends the
ideas of cache and prefix doubling to sort the 1-groups. Runtimes of bpr are
competitive with ds on real-word data and many times faster on highly repet-
itive inputs. The drawback of bpr is that (like other prefix doubling sorters) it
requires at least 8n bytes of working memory to hold pointers to suffixes and
their evolving ranks.

4. SUFFIX SORTING BY COMPUTING LEXICOGRAPHIC RANKS

We introduce several algorithms in this section, developing the simplest scheme
into the most complex. All the algorithms build the ISA, which can then be
permuted into the SA or used to construct the BWT text, as required.

4.1 Sorting Strings with Buckets

At the heart of all the algorithms is an efficient bucket-sorting regime. Most of
the work is done in an array of n integers, which is eventually the ISA, with extra
space required for a small stack. The bucket sorting begins by linking together
all the suffixes having the same first character to form chains of suffixes. For
example, the string

i 0 1 2 3 4 5 6 7

x[i] a a b c b c a $

would result in the creation of the following four chains

(7) (6,1,0) (4,2) (5,3)
$ a b c

We define a u-chain, Cu, for prefix u, as a set of suffixes such that for
all i and j ∈ C, x[i..i + |u| − 1] = x[ j .. j + |u| − 1]. In other words, i and
j are in the same u-chain iff suffixes i and j share u as a common prefix.
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If a u-chain contains only one suffix, like the $-chain above, we say it is a
singleton.

The space allocated for the ISA provides a way to efficiently manage chains.
Instead of storing the chains explicitly as above, we compute the equivalent
array

i 0 1 2 3 4 5 6 7

x[i] a a b c b c a $
ISA[i] ⊥ 0 ⊥ ⊥ 2 3 1 ⊥

In which ISA[i] is the largest j < i such that x[ j .. j + 1] = x[i..i + 1] or a
special symbol, ⊥, if no such j exists. In our example, the chain of all the suf-
fixes prefixed with a contains 6, 1, and 0 and so we have ISA[6] = 1, ISA[1] =
0 and ISA[0] = ⊥, marking the end of the chain. Observe that chains are singly
linked and are only traversable right-to-left. We keep track of u-chains to be pro-
cessed by storing a stack of integer pairs (h, �), where h is the head of the chain
(its right-most index), and � = |u| is the length of the common prefix shared by
the suffixes in the chain. Chains always appear on the stack in ascending lexi-
cographical order, according to x[h..h + |u| − 1]. Thus, for our example, initially
(7, 1) for chain $ is atop the stack and (5, 1) for chain c at the bottom.

Chains are popped from the stack and progressively refined by looking at fur-
ther characters. So long as we take care to process the chains in lexicographical
order, when we pop a singleton chain, the suffix contained has been differenti-
ated from the rest and can be assigned the next lexicographic rank. Elements
in the ISA that are ranks are differentiated from elements in chains by setting
the sign bit, that is, if ISA[i] < 0, then the rank for suffix i is −ISA[i]. The
evolution of the ISA over subsequent sorting rounds for our example string is
illustrated below.

Initially, we have the ISA arranged as shown above. The first item to be
popped from the stack is (7, 1), representing the $-chain and, because this is a
singleton (ISA[7] = ⊥), we set ISA[7] = −1, indicating suffix 7 has lexrank 1.
This yields

0 1 2 3 4 5 6 7

ISA ⊥ 0 ⊥ ⊥ 2 3 1 −1

The next item popped is (6,1) representing the a-chain. We follow the links
in the chain, inspecting the second character of each suffix encountered. This
splits the chain into three subchains for ab, aa, and a$ and so we push (1, 2),
(0, 2), and (6, 2) onto the stack (in that order). The ISA now appears

0 1 2 3 4 5 6 7

ISA ⊥ ⊥ ⊥ ⊥ 2 3 ⊥ −1

The top item on the stack is now (6, 2), which was just pushed; it is a singleton.
We set ISA[6] = −2, indicating suffix 6 has lexrank 2.

0 1 2 3 4 5 6 7

ISA ⊥ ⊥ ⊥ ⊥ 2 3 −2 −1

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.2, Publication date: 2007.



8 • M. A. Maniscalco and S. J. Puglisi

Fig. 1. Suffix bucket sorting.

This process of popping, splitting chains, and assigning ranks continues until
the stack is empty, at which point the ISA is complete

0 1 2 3 4 5 6 7

ISA −3 −4 −6 −8 −5 −7 −2 −1

A high-level algorithm embodying these ideas is listed in Figure 1. We reit-
erate here that when a chain is split, the resulting subchains must be placed
on the stack in lexicographical order for the correct assignment of ranks to sin-
gletons. This is illustrated above when the a-chain is split and the next chain
processed is the singleton a$-chain. Alternatively, we could always place chains
on the stack in reverse lexorder and assign ranks from n down to 1.

Results in Seward [2000] would suggest that direct comparison bucket sort-
ing alone would not make a competitive suffix sorter. In coming sections, we
show how properties inherent to this basic approach can be exploited to accel-
erate sorting.

4.2 Exploiting Previously Ranked Suffixes

The processing of chains in lexicographical order allows for the possibility to
use previously assigned ranks as sort keys for some of the suffixes in a chain.
To elucidate this idea, we first need to make a couple of observations about the
way chains are processed.

When processing a u-chain with |u| = �, we can classify suffixes into two
types: suffix i is of type A, if the rank for suffix i + � is known and is of type
B otherwise. We can classify a suffix this way in constant time by virtue of
the fact we are building the ISA—we inspect ISA[i + �] and a checked sign bit
indicates a rank. Now consider the following observation:

LEMMA 4.1. Lexicographically, type A suffixes come before type B suffixes.

To use this observation, when we refine a chain, we place only type B suffixes
into subchains and place type A suffixes to one side. Now, the order of the m
type A suffixes can be determined via a comparison-based sort, using for suffix
i the rank of suffix i + � as the sort key. Once sorted, the type A suffixes can be
assigned the next m ranks. We refer to sorting suffixes this way as induction
sorting and say that the type A suffixes are “sorted by induction.”

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.2, Publication date: 2007.



An Efficient, Versatile Approach to Suffix Sorting • 9

Fig. 2. The way induction sorting integrates with bucket sorting.

Pseudo code capturing this idea is given in Figure 2. Loosely speaking, as the
number of assigned ranks increases, the probability that a suffix can be sorted
by induction also increases. In fact, every chain of suffixes with prefix σ j σk ,
where σ j < σk will be sorted entirely by induction. Clearly, induction sorting
will lead to a significant reduction in work for many texts.

Induction sorting shares something with both the two-stage algorithm of Itoh
and Tanaka [1999] and cache algorithm of Seward [2000].

Induction sorting can be thought of as not only a very space-efficient version
of the cache scheme, but also as one that allows use of full rank information, not
just 16 bits. These improvements are possible primarily because we are manip-
ulating the ISA rather than the SA. Another key difference is the lexicographic
order in which ranks are assigned and become available for use in induction
sorting.

The idea can also be considered a generalization of the two-stage algorithm.
As noted above, suffixes in a two-chain with common prefix σ1σ2 and σ1 > σ2
are sorted entirely by induction (like the type X suffixes of two stage). However,
the lexicographical processing of suffixes means induction sorting is applied to
suffixes in u-chains with |u| > 2.

Before moving on, we pause to highlight a virtue of the algorithm so far
described. When the ith rank is assigned to ISA[ j ], we know bwt[i] = x[ j −
1]. Because we are assigning ranks in sequence from 1 to n, as the ith rank
is assigned, bwt[i] can be sent straight to the encoder, allowing for parallel
implementation of the sorter and the encoder. This same idea can be helpful
to suffix array construction, in the event that the SA is being stored to disk
for later use. If this is the case, the SA can be output to disk in a contiguous
manner as each rank is assigned, minimizing costly seeks.

4.3 Further Reducing Comparison Sorting

In this section, we describe a way of reducing the number of suffixes sorted with
comparison sorting (using either characters or ranks) to, at most, n/2. The idea
is to split the suffixes into two sets and sort only the smaller set using methods

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.2, Publication date: 2007.



10 • M. A. Maniscalco and S. J. Puglisi

described in the previous sections, with the order of the suffixes in the larger
set induced as a byproduct.

Suffixes are divided as follows: suffix i is of type U if x[i..n] < x[i + 1..n]
and is of type V if x[i..n] > x[i + 1..n]. The type of suffix x[n], is undefined. For
example

0 1 2 3 4 5 6 7

x c c b a b a c $
type V V V U V U V −

This classification is a natural extension of the one used by Itoh and Tanaka
[1999] first described in Ko and Aluru [2003]. Two important qualities of type
U /V suffixes are:

1. All suffixes can be so classified with a simple, linear time algorithm: scanning
x left to right, if x[i] < x[i + 1], suffix then i is type U , and if x[i] > x[i + 1]
then suffix i is type V . If x[i] = x[i +1], we then continue inspecting charac-
ters until we come to some position j , where x[ j ] �= x[i]; if x[i] < x[ j ] then
suffixes i, i + 1, . . . , j are all type U , otherwise they are type V .

2. If suffix i is type V , suffix j is type U and x[i] = x[ j ] then x[i..n] < x[ j ..n].

We will assume for the moment that the type U suffixes are fewer (shortly
we will treat the opposite case). Before sorting of the type U suffixes begins,
we mark the positions of the type V suffixes by setting ISA[i] = ⊥, if suffix
i is type V—doing this allows us to later decide the type of a suffix in con-
stant time. Also, for each distinct bigram αβ ∈ �2 that is a prefix of a type V
suffix, we maintain a separate list Mαβ (initially empty) in which an ordering
on the type V suffixes will be developed. Only type U suffixes are linked to-
gether in chains. These suffixes are to be sorted with character comparisons and
induction-sorting techniques, as previously described. However, now whenever
we assign a rank to suffix i, if suffix i − 1 is of type V , we add suffix i − 1 to the
end of list Mx[i−1]x[i]. Provided we always do this, the following holds

LEMMA 4.2. When all suffixes prefixed with bigrams lexicographically less
than αβ have been ranked, the list Mαβ contains the type-V suffixes prefixed with
αβ in lexicographical order.

PROOF. The result follows from the fact that for all suffixes i, j ∈ Mαβ

we have x[i] = x[ j ] and i only comes before j in Mαβ , if rank(i + 1) <

rank( j + 1).

We process a list Mαβ containing m suffixes by simply assigning the next m
ranks to the suffixes in the order they appear in the list. It is also important
here, that when we assign a rank to suffix i, if suffix i − 1 is of type V we add it
to list Mx[i−1]x[i]. The u-chain on top of the stack indicates when M lists should
be processed. More precisely, let (h, �) be the element on top of the chain stack.
If � = 1 and x[h] �= σ1, then we process lists Mx[h]σ1 , Mx[h]σ2 , . . . , Mx[h]x[h] before
continuing processing of the chain. For example, when we pop the c-chain we
know to process Mca, Mcb, and Mcc before refinement of the c-chain itself.

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.2, Publication date: 2007.



An Efficient, Versatile Approach to Suffix Sorting • 11

The Mαβ lists can be stored efficiently in the ISA in the same manner that
chains are stored, with extra space required only for list heads and tails.

If the U suffixes are more frequent than the V suffixes, we can reverse their
roles in the above process to obtain an algorithm that sorts, at most, n/2 suffixes
by comparison sorting. The major difference in logic when ranking V suffixes
instead of U suffixes is that ranks must be assigned from n down to 1. To this
end, we have the bucket-sorting process chains in reverse lexorder and modify
induction sorting accordingly.

Finally, we remark that while above the number of Mαβ lists is O(�2), it was
described this way only for ease of exposition and the technique can still be
applied when � is large. The basic idea is to maintain two lists for each symbol:
Mα for V suffixes prefixed αβ, where α �= β and Mαα containing V suffixes
prefixed αα.

4.4 Detecting and Processing Repetitions

We now describe how the right-to-left chains of suffixes formed during bucket
sorting enable us to detect repetitions in the input string and sort the suffixes
involved in them efficiently. Before giving the details of our method, we first
define the structure we are interested in.

Definition 4.3. A repetition in a string x[0..n] is a substring x[i..i + rp]
for integers r ≥ 2, p ≥ 1, i ≥ 0 such that x[i..i + p] = x[i + p + 1..i + 2p] =
· · · = x[i + (r − 1)p + 1..i + rp] and x[i..i + p] �= x[i − p..i − 1] and x[i..i + p] �=
x[i + rp + 1..i + rp + p]. We call u = x[i..i + p] the generator of the repetition,
p = |u| the period of the repetition, and r the exponent. A repetition located at
position i in a string is succinctly represented by the tuple ur = (i, p, r).

For example, the string x[0..17] = abcaaaabcdabcdabcdab contains the rep-
etitions: a4 = (3, 1, 4); abcd3 = (6, 4, 3); bcda3 = (7, 4, 3); cdab2 = (8, 4, 2) and
dabc2(9, 4, 2).

Detecting repetitions in strings is a well-studied problem in stringology
(see Smyth [2003]). Strings containing many repetitions are generally difficult
cases for suffix-sorting algorithms as the average common prefix is very high.
Such strings are known to be particularly catastrophic for direct-comparison
algorithms, such as two-stage, copy, cache and ds, as illustrated by experiments
in Kärkkäinen and Burkhardt [2003], Schürmann and Stoye [2005], and Puglisi
et al. [2005].

In a u-chain, a repetition is manifest as a maximal sequence of |u| spaced
elements. We call such a sequence a repetition sequence denoted Si,u of length
|Si,u| = |S|, where i is the value of the right-most element in the sequence. We
will refer to i as the terminating position of the repetition sequence and the
other elements in Si,u as nonterminating positions. Detecting repetitions by
looking for these sequences naturally integrates with the processing of suffix
chains. Consider the string

i 0 1 2 3 4 5 6 7

x[i] b c a a a a c b $
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After forming the initial chains, we have

5,4,3,2 7,0 6,1
a b c

For each of these chains |u| = 1. We process the chain a first and discover the
repetition sequence S5,a = 5, 4, 3, 2, because each suffix in the chain is spaced
|u| positions apart. Once we have detected the repetition Si,u, we can sort the
suffixes i, i − |u|, i − 2|u|.., i − |u|(r − 1) relative to each other by making use of
the following observation.

LEMMA 4.4. For the repetition sequence Si,u, if suffix i can be sorted by in-
duction, then x[i..n] < x[i − |u|..n] < · · · < x[i − |u|(|S| − 1)..n], otherwise
x[i..n] > x[i − |u|..n] > · · · > x[i − |u|(|S| − 1)..n].

The correctness of this observation is because of the processing of the u-
chains in lexicographically ascending order.

When a u-chain contains more than one repetition sequence, things become
trickier to deal with than the example above. In general, a chain will contain
a set of repetition sequences, M, where the repetitions all have the same gen-
erator (being u because they have been detected in the same u-chain). Suffixes
in M are processed differently, depending on whether the terminating position
can be sorted by induction or not—we divide the set into a set I containing se-
quences with terminating position sortable by induction and set R containing
the others.

LEMMA 4.5. Lexicographically, the suffixes in the repetition sequences in I
come before the suffixes in repetition sequences in R.

PROOF. Consider Si,u ∈ I and Sj ,u ∈ R. Every suffix in Si,u is of the form
ukv, k > 0. Every suffix in Sj ,u is of the form u�w, � > 0. The strings v and
w are nonempty and (lexicographically) w < v. Because the chains are being
processed in lexorder, we must have u < w. The result follows.

Dealing with I is relatively easy. First, the terminating positions of sequences
in I are sorted along with other suffixes from the u-chain sortable by induction,
as usual, and ranks are assigned. Once the order of the terminating positions
is known, the order of the nonterminating positions are interleaved and put
in order. For example, if I contains two sequences Si,u and Sj ,u and rank(i) <

rank( j ) then rank(i − |u|) < rank( j − |u|) < rank(i − 2|u|) < rank( j − 2|u|) . . . ,
and so on, for each nonterminating position in Si,u and Sj ,u.

The nonterminating positions in sequences in R can be interleaved in a
similar way to those in I above, however, the sorting of the terminating positions
is more delicate. To sort the nonterminating positions R, we need to know the
order of the terminating positions, relative to the other suffixes in the u-chain
not sortable by induction. We link together all the nonterminating positions
from right to left to form a special chain C. Terminating positions are put in
subchains as normal, along with other suffixes from the u-chain that are not
sortable by induction. Now, we push C onto the chainstack before the other
subchains. We continue to process chains from the chainstack, but now when
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Fig. 3. Permute ISA into the SA in place.

we would normally assign a rank to a suffix, we instead add the suffix to the
end of a list Q. Later, when we reach C on the stack, we can use the order of the
suffixes in Q to order the suffixes in C.

To implement the above schemes, we require only constant extra space. The
lists Q and C can be implemented in the space of the ISA (previously occupied
by the suffixes in repetition sequences), with extra space required only for list
heads and tails.

If p ≥ 2, then the detection of (i, p, r) implies the presence of another p − 1
repetitions in other u-chains. The sorting of (i, p, r) means these other repeti-
tions will be sorted by induction before they are detected as repetitions.

4.5 ISA to SA Transformation

As noted at the end of Section 4.2, our algorithms are well suited to computing
the BWT of the input text: when a suffix i receives its rank, the character
in the corresponding final column of the BWT matrix is the ith character in
the transformed text. When the transformation completes, the ISA has been
computed as a byproduct. If one requires the SA in memory rather than the
ISA, the transformation can be done in place (constant extra memory required)
and in linear time using the code in Figure 3.

The idea is to cyclically displace ranks in the ISA, moving suffixes into their
place in the SA. Say suffix s with rank q = ISA[s] is the next suffix we need to
move into its place in the SA. We displace the rank at ISA[q] to a temporary
variable r, and set ISA[q] = −s, with the negated sign bit indicating the element
is in place. Now, r will be the position of suffix q in the SA. We continue following
the cycle in this way until the displaced rank, r equals the index where we
started, s. We then move to the right, until we find another element out of
place, at which point we cycle again. When we reach the end of the array, the
ISA has been transformed to the SA.

5. ENGINEERING AND IMPLEMENTATION DETAILS

In this section, we describe techniques we used to derive efficient implementa-
tions of the algorithms described in the previous section. Many of these exploit
the case where |�| ≤ 256, however, the most significant improvements come
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from methods that work to make the algorithms more cache friendly and are
applicable to all alphabets.

5.1 Input Transformation

Before suffix sorting begins in earnest, we conditionally apply the following
transformations to the input string.

1. Alphabet compaction. We recode the alphabet so that the symbols are con-
tiguous and have the values 0 · · · |�| − 1. We do not require 0 to be reserved
for the x[n] = $ symbol, because we can assign suffix n rank 1 before sorting
starts—any other suffix i < n that is compared to depth n − i will be sorted
by induction, with ISA[n] = 1 as its sort key.

2. Boosting type U suffixes. Instead of having the implementation adapt to
sort the smaller of the type U and type V sets, if the type V suffixes are
fewer, we transform the string so that the type U suffixes are fewer by
replacing x[i] with |�| − x[i]. Ensuring that comparison sorting only deals
with U suffixes allowed us to simplify code and reduce development time.
In a production environment one would probably implement two versions
of the suffix-sorting routine.

In coming sections, � should be interpreted as referring to the alphabet after
the above transformations have been applied.

5.2 Bucket Sorting

For strings on alphabets |�| ≤ 256, we have the bucket sorting consider two
symbols at a time on the fly. This means forming, at most, |�|2 chains initially,
and on every refinement. Such “dynamic symbol aggregation” is viable, because
when |�| ≤ 256, |�|2 ≤ 65536 is a manageable size. The combining of two char-
acters into one not only speeds up string sorting, but also allows for induction
sorting to be applied to more suffixes (see discussion below).

5.3 Induction Sorting

We collect suffixes for induction sorting by copying both the suffix number and
its sort key (the rank of another suffix) to a separate array, which is dynamically
grown as required. The suffix and its key are placed in adjacent positions in
the array and moved together during comparison sorting. Arranging the items
this way attracts a substantial benefit from the cache as it avoids misses that
would be incurred by looking up the key in ISA every time it is needed during
comparison sorting. The potential disadvantage is the extra space required. If
there are m suffixes to be sorted by induction, the above array requires 8m bytes
of storage. We have found, in practice, that m is usually very small relative to
n (especially after alphabet compaction) and believe that pathological cases,
where 8m bytes is problematic, are very rare. However, if space is a paramount
concern there are the following alternatives:

1. We could only copy each suffix index i to the array, lookup the sort key in
ISA[i + �], as required, and take the extra cache misses on the chin. This
reduces the size of the array to 4m bytes.
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2. If 4m bytes is still too much, a more complicated but space-efficient method
can be adopted, which requires 2n + o(n) bits. We exploit the fact that the
ranks used as sort keys are unique. Let r is the number of ranks assigned so
far. We allocate T , a bit array of r bits. As each suffix sortable by induction
is found in a u-chain, we set bit ISA[i + |u|] of T . Also, instead of copying
induction suffixes out, link them together in the ISA in the same way suffixes
in a chain are linked together. Now process T so that the function rank(k),
0 < k ≤ r can be evaluated in constant time. This requires one pass over
T and r + o(r) bits of storage [González et al. 2005]. Finally, pass over the
chain of induction suffixes and for each one encountered i, set ISA[i] =
r + rank(ISA[i + |u|])1.

For comparison sorting, we employ our own implementation of the hybrid
quicksort/heapsort approach described by Musser [1997]. Our version includes
ternary quicksort with insertion sort for small partitions and we found it to be
significantly faster than the approach of Bentley and McIlroy [1993].

When |�| ≤ 256, comparison of bigrams instead of single symbols allows
for a more powerful form of induction sorting. Specifically, when processing a
chain with common prefix length �, we can now classify suffixes into three types:
Suffix i is of type A, if the rank for suffix i + � − 1 is known, and is of type B,
if the rank for suffix i + � is known. If i is not of type A or type B, then it is
of type C. Lexicographically, type A suffixes are smaller than type B suffixes,
which, in turn, are smaller than type C suffixes. As before, the order of the m
type A suffixes can be determined via a comparison-based sort, using for suffix
i the rank of suffix i + � − 1 as the sort key. Once sorted, the type A suffixes are
assigned the next m ranks. The type B suffixes are treated similarly, using the
rank of j + � as the sort key for j . In fact, we can sort the type A and B suffixes
in the same sort call by using as a key for a type A suffix i the rank of i + � − 1
and for a type B suffix the negated rank of i + �.

5.4 Producing the Suffix Array

When computing the suffix array with our approach, the final task is to trans-
form the ISA into the SA. The problem with the algorithm for this task given
in Figure 3 is its cache insensitivity: when following a cycle the next place in
ISA accessed is essentially random, giving us little help from cache, with cor-
respondingly slow runtime. We put some effort into developing a more cache
friendly ISA to SA transform, which uses space of the input string as working
space.2 In the description of it which follows, we assume the string provides us
with 2n bytes of working space and that n is a power of 2.

The string space, x, is divided into two equal, contiguous portions xA and xB,
of n bytes (and capable of storing n/4 integers) each. Denote by Qi, i ∈ 1..4, the
set of suffixes, which belong in the ith quarter of SA. There are two phases to

1We did not actually use this method in any of our programs, but we include it here for the practi-
tioner that is particularly paranoid about worst-case space usage.
2This destroys the string, but if we first compute symbol frequencies, it can be reconstructed from
the suffix array (see Manzini [2004]).
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the transformation. In the first phase, four left-to-right passes are made over
the ISA as follows:
� Pass 1. Locate the members of Q1 and move them to xA. If ISA[ j ] ∈ [0..n/4)

then suffix j ∈ Q1, so move it to xA[ISA[ j ]] and mark ISA[ j ] as empty. At
the end of this pass Q1 is sorted in xA.

� Pass k = 2, 3, 4. If ISA[ j ] ∈ [ n(k−1)
4 ..nk

4 ) then suffix j ∈ Qk . If k is even
(respectively odd) move j to xB[ISA[ j ] − n(k−1)

4 ] (respectively, xA) and mark
ISA[ j ] empty. For each empty place we encounter in the scan (including a
place just made empty by a move to x) move the next item in xA (respectively,
xB) to that place, and tag it by setting the most significant two bits to k − 1.
These tags will later allow us to determine which Qi a suffix belongs to in
constant time.3 Copying back the suffixes belonging to Qk this way ensures
they are in ascending order of their position in SA (although they may not
yet be adjacent), and means their order can later be read in a cache-friendly
way.

Now the members of Q4 are sorted in B and there are n/4 empty places at the
end of ISA. These elements are copied from B to ISA[ 3n

4 ..n − 1], where they are
in their final position and will not be moved again. The members of Q1, Q2,
and Q3 are in ISA[0.. 3n

4 − 1] and are tagged as described above.
The second phase completes the transformation. We scan ISA[0.. 3n

4 − 1] and
if ISA[ j ] belongs to Q2 (respectively, Q3) we move it to xA (respectively, xB).
Membership to a given quarter is determined by inspecting the tags in constant
time. When we move an element ISA[ j ] we mark ISA[ j ] as empty. During the
scan, if we encounter a member of Q1, we move it to the leftmost unoccupied
position (which is kept track of with a separate pointer). When the scan com-
pletes, members of Q1 are in their final positions in ISA[0..n

4 − 1]. Finally, we
copy Q2 and Q3 from A and B to ISA[ n

4 ..n
2 − 1] and ISA[ n

2 .. 3n
4 − 1], respectively,

and the ISA has been transformed in the SA. Because it mainly performs cache
friendly left to right scans of ISA, xA and xB, we found the above procedure
to be always faster than performing the transformation in place. To adapt the
procedure to the case when the string provides us with only n bytes simply
requires making us to make more (in fact eight) passes over the ISA and to use
3-bit tags (restricting n < 229).

6. EXPERIMENTS

We implemented two versions of our approach. First, induce refers to a program
incorporating ideas from Sections 4.1, 4.2, and, 4.4. The second program split
adds the type U/V splitting idea of Section 4.3, but is otherwise the same as
induce. We tested these two programs against other leading implementations.
These were:

qsufsort. A sorter using the prefix-doubling approach of Larsson and
Sadakane [1999] downloaded from http://www.larsson.dogma.net/research.
html.

3Tagging also restricts the use of this procedure to strings with n < 230
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Table I. Description of the Data Set Used in Experiments for Small Alphabet Suffix
Array Construction and Character-Based BWT Scenariosa

String Mean LCP Max LCP Size (bytes) � Description
sprot34 89 7,373 109,617,186 66 SwissProt database
rfc 93 3,445 116,421,901 120 IETF RFC files
howto 267 70,720 39,422,105 197 Linux Howto files
reuters 282 26,597 114,711,151 93 Reuters news in XML
linux 479 136,035 116,254,720 256 Linux kernel source
jdk13c 679 37,334 69,728,899 113 JDK 1.3 documentation
etext99 1,108 286,352 105,277,340 146 Project Gutenberg text
chr22 1,979 199,999 34,553,758 4 Human chromosome 22
gcc 8,603 856,970 86,630,400 121 Gnu C Complier source
w3c2 42,300 990,053 104,201,579 255 HTML files from W3C site

aLCP refers to the longest common prefix amongst all suffixes in the string.

ds. An implementation of the deep-shallow algorithm by Manzini and
Ferragina [2004] downloaded from http://www.mfn.unipmn.it/~manzini/
lightweight/.

bpr. An implementation of the bucket-pointer-refinement algorithm by
Schürmann and Stoye [2005] obtained from http://bibiserv.techfak.
uni-bielefeld.de/bpr/.

All programs were written in C/C++. We are confident that all implementa-
tions tested are of high quality. In preliminary experiments, we tested many
more suffix-sorting programs, but do not include measurements here because
they were much slower than implementations, such as qsufsort. To assess
practical performance we measured runtimes and memory usage of the imple-
mentations in three application scenarios, listed below.
� Character BWT. The task was to compute the BWT of files with � ≤ 256.

The other programs tested were qsufsort, ds, and bpr, to which we added a
(trivial) final phase to compute the BWT. The files used for testing were from
the corpus compiled by Manzini4 and Ferragina [Manzini and Ferragina 2004]
listed in Table I, which have become a defacto benchmark for testing suffix-
sorting algorithms. Experiments measured runtimes and memory usage.

� Small Alphabet Suffix Array Construction. An important variation on the first
scenario is to compute, instead, the suffix array for each file. Other programs
tested were qsufsort, ds, and bpr. Test files were those in Table I, as per the
BWT scenario. Experiments measured runtimes and memory usage.

� Large Alphabet Suffix Array Construction. The purpose was to measure per-
formance on larger (16-bit) alphabets. Test strings were derived from the
MF corpus files by combining every second bigram into a single symbol. The
resulting strings have one-half as many symbols and |�| ∈ 11, 000..65, 000
(each new symbol requires two bytes). Developing the test set this way makes
it easy for other researchers to compare future algorithms with ours. Statis-
tics for these recoded strings are in Table II. The only other program we re-
port on is qsufsort, which was the only competitive implementation we could

4http://www.mfn.unipmn.it/~manzini/lightweight/corpus/
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Table II. Large Alphabet Data Set

String Mean LCP Max LCP Size (symbols) � Description
sprot34 37 1,667 54,808,593 2,575 SwissProt database
rfc 33 1,626 58,210,950 8,828 IETF RFC files
howto 59 34,674 19,711,052 10,092 Linux Howto files
reuters 114 11,959 57,355,575 4,900 Reuters news in XML
linux 208 68,017 58,127,360 15,578 Linux kernel source
jdk13c 275 17,010 34,864,449 5,858 JDK 1.3 documentation
etext99 235 92,890 52,638,670 5,005 Project Gutenberg text
gcc 4,270 428,464 43,315,200 9,217 Gnu C Complier source
w3c2 15,421 495,026 52,100,789 58,917 HTML files from W3C site

Table III. Runtime (msec) of Peak Memory Usage in Bytes per Input Symbol (in
parenthesis) for the Character-Based BWT Experiment

String split induce ds bpr qsufsort

sprot34 55210 (6.31) 79210 (6.16) 79880 (5.01) 104770 (9.01) 133830 (9.00)
rfc 56240 (6.22) 76730 (6.22) 71010 (5.01) 99200 (9.06) 143180 (9.00)
howto 16650 (6.25) 23550 (6.25) 20230 (5.01) 23390 (9.78) 38430 (9.00)
reuters 68080 (6.16) 90530 (6.16) 152990 (5.01) 139180 (9.02) 169250 (9.00)
linux 51240 (6.15) 77770 (6.15) 60220 (5.01) 74690 (9.58) 121290 (9.00)
jdk13c 39640 (6.14) 55130 (6.26) 85190 (5.01) 67030 (9.08) 96610 (9.00)
etext99 53720 (6.17) 70130 (6.25) 75790 (5.01) 97600 (9.12) 135840 (9.00)
chr22 16650 (6.51) 19490 (6.74) 17260 (5.01) 17720 (9.00) 31100 (9.00)
gcc 57310 (6.20) 56630 (6.11) 77630 (5.01) 63530 (9.16) 91480 (9.00)
w3c2 60460 (6.17) 101040 (6.17) 129100 (5.01) 88930 (9.64) 176880 (9.00)

obtain suitable for larger alphabets. Experiments again measured runtimes
and memory requirements.

All experiments were conducted on a 2.8 GHz Intel Pentium 4 processor
with 2 GB main memory. The operating system was RedHat Linux Fedora
Core 1 (Yarrow) running kernel 2.4.23. The compiler was g++ (gcc version 3.3.2),
executed with the −O3 option. All running times given are the average of four
runs and do not include time spent reading input files. Times were recorded
with the standard Unix time function. Memory usage was recorded with the
memusage command available with most Linux distributions.

7. RESULTS

7.1 Character-Based BWT

Runtimes and peak memory requirements for the sorters are given in Table III
and summarized in Figure 4. The split sorter is fastest on all files except gcc,
where induce is fractionally quicker. Second place is shared between induce
(sprot, reuters, jdk13c, etext99), ds (rfc, howto, chr22), and bpr (w3c2), with ds
tending to better on the shorter files. The closest competitor to split, ds, ranges
from being 1.1 (gcc) to more than two times (reuters, w3c2) slower. On the other
hand, ds requires the least memory and uses 1–2n bytes per input character
less than split and induce, and 4–5n bytes less than bpr and qsufsort.
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Fig. 4. Resource requirements of the five algorithms when computing the Burrows–Wheeler trans-
form, averaged over the test corpus. Error bars are 1 S.D. Abscissa errors bars for ds and qsufsort

are not shown, as they are insignificantly small.

7.2 Suffix Array Construction

In this scenario, split and induce require exactly n bytes less than for BWT,
and so consume between 5.1 and 5.5 bytes per input symbol. This is competitive
with ds, which again is the most space-efficient program. Here, as before, split
dominates runtimes, but not as convincingly as it did when computing the BWT.
It places second on howto, and linux (to ds), third on gcc (to bpr), and chr22 (to
ds). The result on chr22 (where split takes 1.2 times as long as ds) indicates the
effectiveness of Seward’s pointer-copying heuristic (employed by both ds and
bpr) on inputs with small �. On average, split is still easily the quickest per
symbol, as illustrated in Figure 5 and Table IV. Relative to the BWT experiment,
times for ds and bpr decrease, because they no longer convert the SA to the BWT
text. On the other hand, times for split and induce increase, as they are now
required to convert the ISA to the SA. This final step is extremely costly and
constitutes 15–20% of split’s overall runtime. We remark that when the job
was to output the SA to disk, we observed results similar to that for the BWT
scenario, with split a clearer winner.

7.3 Large Alphabet (See Later Table V)

In this experiment, both split and induce handsomely outperform qsufsort,
which for all files except jdk13c is always more than two times slower—a greater
gap than in the small � scenario. Our sorters also require nearly two bytes per
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Fig. 5. Resource requirements of the five algorithms when computing the suffix array on the small
� corpus. Error bars are 1 S.D. Abscissa errors bars for ds and qsufsort are not shown, as they
are insignificantly small.

Table IV. Runtime (msec) of Peak Memory Usage in Bytes Per Input Symbol (in
parenthesis) for the Suffix Array Construction, Small � Experiment

String split induce ds bpr qsufsort

sprot34 58990 (5.31) 83650 (5.16) 74090 (5.01) 98980 (9.01) 144070 (8.00)
rfc 61310 (5.22) 81290 (5.22) 65000 (5.01) 93190 (9.06) 154210 (8.00)
howto 18410 (5.25) 24960 (5.25) 18160 (5.01) 21520 (9.78) 39970 (8.00)
reuters 72920 (5.16) 94210 (5.16) 146740 (5.01) 132930 (9.02) 183230 (8.00)
linux 56620 (5.15) 82780 (5.15) 55110 (5.01) 69570 (9.58) 120430 (8.00)
jdk13c 43570 (5.14) 58130 (5.26) 81880 (5.01) 63720 (9.08) 105130 (8.00)
etext99 58160 (5.17) 74420 (5.25) 75790 (5.01) 91760 (9.12) 145520 (8.00)
chr22 18100 (5.51) 20970 (5.74) 15510 (5.01) 15970 (9.00) 35200 (8.00)
gcc 62120 (5.20) 60080 (5.11) 73970 (5.01) 59810 (9.16) 92220 (8.00)
w3c2 65420 (5.17) 104210 (5.17) 118370 (5.01) 84040 (9.64) 192240 (8.00)

input symbol less working space. The difference in runtimes may be partially
attributable to the shortening of the average LCP in the recoded test files. Even
so, the results demonstrate the efficacy of our general approach to suffix-sorting
in applications where � is large and sets split and induce apart from ds and
bpr, which are unusable in such contexts.
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Table V. Runtime (msec) of Peak Memory Usage in
Bytes Per Input Symbol (in parenthesis) for the Suffix

Array Construction, Large � Experiment

String split induce qsufsort

sprot34 38410 (6.31) 43420 (6.16) 85410 (8.00)
rfc 40130 (6.22) 44440 (6.22) 85990 (8.00)
howto 11420 (6.25) 13010 (6.25) 23270 (8.00)
reuters 48190 (6.16) 53360 (6.16) 99980 (8.00)
linux 36420 (6.15) 41120 (6.15) 79170 (8.00)
jdk13c 29150 (6.14) 32280 (6.26) 56650 (8.00)
etext99 33940 (6.17) 39190 (6.25) 78010 (8.00)
gcc 9820 (6.20) 10970 (6.11) 59270 (8.00)
w3c2 26330 (6.17) 29720 (6.17) 98610 (8.00)

8. CONCLUSIONS AND FUTURE WORK

We have described a new approach to suffix sorting that is fast, space efficient,
and effective for a wide variety of applications. Our experiments have shown
the two main variations of our algorithm to be superior, on average, to other
schemes, both for suffix array construction and for computing the Burrows–
Wheeler transformation, on byte sized and larger alphabets.

Induction sorting reduces the average number of character comparisons re-
quired to sort the suffixes to well below the average LCP and means that as more
suffixes are sorted, sorting generally becomes easier. The identification of U/V
suffixes essentially makes the induction-sorting process more efficient by elim-
inating the need for much of the comparison sorting. The repetitions heuristic
further reduces character comparisons by dealing with long runs of identical
substrings (most importantly, runs of identical characters and bigrams) with
great ease. This eliminates the useless sorting rounds which plague many of
the other suffix-sorting algorithms on very repetitive strings. When taken in
combination, we believe these techniques ensure that catastrophic inputs are
very rare indeed.

We end by commenting on two potential space-time tradeoffs. When con-
structing the suffix array, a slowdown comes in the final step, where the ISA
is transformed to the SA. We believe the gap between our algorithms and the
others would widen still, if 8n + zn bytes were budgeted as working space and
made available throughout the algorithm. At the other extreme, the observation
that once ISA[i] is ranked, ISA[i + 1] will never be used for induction sorting
alludes to the possibility of a fast version of our approach that uses less than
4n + zn bytes of memory if the SA is allowed to be output to secondary stor-
age, or if the BWT is the desired result. Preliminary experiments (see Puglisi
[2005]) indicate that, on average, only around 25% of ranks are usuable at any
given time. Future work will decide whether these ideas are also of practical
interest.
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E. Chávez, and M. Crochemore, Eds. Lecture Notes in Computer Science, vol. 2676. Springer-
Verlag, Berlin. 55–69.
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