
Application Developers Training Company is: Learn
from the experts. We did! The lectures and
demonstrations took us from database design
fundamentals and simple table, query, form, and
report design and creation to advanced topics in
coding Access macros, Access Basic (a programming
language which is included with Microsoft Access),
and event-driven programming. The Advanced
Microsoft Access Programming class included an
introduction to security issues, Data Access Objects,
OLE/DDE, and Access Add-ins (used to extend the
capabilities of the Access development environment).
Although the details of these most advanced topics
are beyond the scope of our second Microcomputer
Applications course, I expect to incorporate these
concepts in the separate, and more general Database
Management course which I will also be teaching in
the spring semester.

Throughout the week I was very impressed with the
power and sophistication that Microsoft Access
places at our fingertips. I anticipate that my
Microcomputer Applications II students will produce
usable applications far more powerful than my
COBOL students could hope to create in a single
semester. Of course, since many of my COBOL
students will also be taking Microcomputer
Applications II, our CIS graduates should be well
equipped to handle projects in a traditional MIS
setting as well as utilize today's powerful office
application software.

For more information about Application Developers
Training Company, you may call (800) 295-1883.

DOUBLY-LINKED OPPORTUNITIES

by Jim Carraway
Manatee Community College

Bradenton, FL 34207
ca rrawj @ fi rnvx.fi rn, ed u

teaching a C++ class, the topic of sorting doubly-
linked lists came up. I thought this was a subject
worth pursuing, so I told my class to consider the
problem and that we would cover the matter during
the next meeting. Now, it was time for me to do my
homework. My usual approach to a situation like
this is to review all the textbooks that fill my book
shelves and cover my floor. No success. This left
me with an opportunity (remember the expression) at
a time when I had at least a hundred other things on
my To Do list. The result of my efforts are
presented below.

At the next class meeting I presented the students
with the discussion topic: Which sorting algorithm
is best suited for doubly-linked lists? Due to the
chained nature of linked lists it was the consensus of
the class that a sort of the sequential variety would
be the most appropriate. Of course the grand-daddy
of sorts was mentioned -- the Bubble Sort. At this
time I unveiled my masterpiece -- the Sediment Sort
(Listing 1).

Additionally, the Swap function (Listing 2) was
covered. The description of the process using the
diagrams of a doubly-linked list (Figures 1- 3) and
an example (Table 1) was one of those occasions
when a picture was worth a thousand words.
(Besides that it gave me an excuse to use the
overhead projector that was gathering dust in the
comer.) The students gave the appearance of being
impressed.

At my next opportunity I plan to convert this
algorithm for use with an array so I can do a
comparative study with the Bubble Sort and the Shell
Sort against 2000, 4000, and 8000 items. Then, I
think I'll compute the Big O for the Sediment Sort.
Does the expression, If a study not worth doing at
all, it is not worth doing well mean anything to you?

Does the expression, Opportunity always knocks at
the least opportune moment, mean anything to you?
Well, it seems to control my life. Recently, while

Page 8 3C ONLINE Volume 3, Number 1 January 1996

Listing 1

// The purpose of this function is to sort a doubly linked list. As each item in the original list series to its
// layer in the sorted list it becomes the new bottom. Just as sedimentation is completed when everything
// has sealed, the sort is completed when all the items have sealed.

void sedimentsor t (void)
{

struct list_type *sort_ptr, *new_tail;
int swapped, end;

// new tail controls the end of the list for sorting purposes.
new tail = tail;
while (new_tail != head) {

// At this time, if new_tai l = head either the list is empty (both are NULL) or there is
// only one item in the list (they both point to the same item). Later, if they are equal it
// indicates all the items in the list have settled to their proper level.
// Each pass starts at the head of the list.

sort ptr = head;
// If swapped is still zero at the end of a pass the sort is complete.

swapped = O;
// end is used to control the inside loop; it ends the loop when the next item to be
// compared is also one of the terminating items (tail or new_tail).

end = O;

do {
// Compare an item to the next one in the list, if it is greater then the two items will swap
// positions in the list, otherwise use the next item as the comparison item.

if (stricmp(sortdotr->name, sortA~tr->next->name) > O) {
sor t_p t r - swap(sort~otr, sort~otr->next);
swapped -- 1 ;

}
else

sort_ptr -- sort_ptr->next;

// If the new item to be compared is either the last item in the list (tail) or the item that
// controls the end of the list for sorting purposes (new_tail) establish a new end of the
// list for sorting purposes (new_tail) and set the end indicator - what this means is that
// there is no need to continue comparing items on this pass.

if((sort_ptr == tail) II (sort_ptr == new_tail)) {
// Under these conditions if an item was swapped on this pass we need to establish a
// new end of the list for sorting purposes (new_tail) so the outside loop can be
// controlled - what this means is that i f a swap has taken place the sediment has
// created a new bottom to the list and i r a swap did not take place the list is completely
// sorted at this time.

if (swapped)
new tail = sort~mr->prev;

else
new tail = head;

// Set the end indicator to terminate the inside loop.
end = 1 ;

}
} while (!end);

}
}

Listing 1 - This is the listing of the Sediment Sort. Due to their nature linked lists do not offer themselves to a
variety of sorts. The Sediment Sort is one of the fastest and most efficient sorts for linked lists.

3C ONLINE Volume 3, Number 1 January 1996 Page 9

Listing 2

// This structure contains only a name and two pointers. It is a minimal structure used
/ / to illustrate the Sediment Sort.
struct list_type

{
char name[20];

// The following point to the previous entry in the list and the next entry in the list, respectively.
l i s t t y p e *prey;
l i s t t y p e *next;

};

// head points to the front of the list and is initialized to NULL.
list_type *head = NULL;

// ta i l points to the end o f the list and is initialized to NULL.
list_type *tail - NULL;

// This function swaps the order o f the two items sent to it.
struct list type* swap(struct l i s t t y p e *one, struct list type *two)

{
/ /1 .

if (one->prey = - NULL)
head - two;

else
one->prev->next = two;

/ /2 .

/ /3 .

/ /4 .

/ /5 .

/ /6 .

if (two->next = - NULL)
tail = one;

else
two->next->prev - one;

two->prey - one->prev;

one->next = two->next;

one->prey - two;

two->next = one;

return one;
}

Listing 2 - The Swap function is one of the most efficient for this purpose because of the use o f resources
(no additional variables) and the limited number of compares and the minimum of swapping. The
numbered statements correspond to the swapping in Figure 2.

Page 10 3C ONLINE Volume 3, Number 1 January 1996

I CA

0F

'l cA I'° I NULL
6F

6F
IJo I

132
Alice

GF
1D

113
Zeke
B2

OF

OF

I Jacqui 1D
I NULL

Figure 1 - This is the order o f the list before
the first swap in the first iteration o f the sort.

I c^ I
CA

NULL
B2

6F

B2

B2
Alice

1D
Zcke

6F
OF

OF
Jacqui
1D
NULL

F i g u r e 3 - This is the order of the list after
the first swap in the first iteration o f the sort.

I

Q = N

I

I i

e

Q

Figure 2 - This is a depiction o f the swapping of addresses in the doubly linked list.
The numbers correspond to the numbered commands in Listing 2,

3C ONLINE Volume 3, Number 1 January 1996 Page 11

Table 1

The conf igura t ion o f the table be low is: the first grouping is the settings o f the variables and pointers as the

inside loop is entered; the next grouping is the order o f the i tems in the list at the comple t ion o f the inside

loop (i tal icized i tems are r e m o v e d from considerat ion because new_ta i l sets the end o f the list; and the last

g roup ing is the settings o f the variables and pointers at the comple t ion o f the inside loop. The co lumns

represent the execut ions o f the inside loop.

1. 2. 3. 4.

head = CA

tail = OF

new tail = 0F

sort_ptr = CA

swapped = 0

end = 0

Jim

Alice

head = CA head = B2

tail = ID tail = 1D

new tail = OF new tail = OF

sort_ptr = CA sort_ptr = B2

swapped = 0 swapped = 0
i i l l

e n d = 0 end = 0

head = B2

tail = 1D

new tail = OF

sort_ptr = B2

swapped = 0

end = 0

Alice

Jacqui

Jim

Jo

Zeke

head = B2

tail = ID

n e w t a i l = B2

sort_ptr = OF

swapped = 0

end = 1

Jo

Jacqui

Zeke

head = CA

tail = 1D

new tail = OF

Alice Alice

Jim Jacqui

Jacqui Jim

Jo Jo

Zeke Zeke

sort~otr = 1D

swapped = 1

end = 1

head = B2 head = B2

tail = 1D tail = 1D

new tail - OF new tail = OF

s o r t ~ t r - 6F sortA~tr = CA

swapped = 1 swapped = 1

end = 1 end = 1

1. The initial execution o f the inside loop begins with the following order o f the items in the list.
Jim Jo Alice Zeke Jacqui

The entire doubly linked list is shown in Figure 1 along with the head and tail variables. The address o f each
item is represented by the two characters by the struct (i.e., CA).

During this execution there are four comparisons made and there are two swaps. The first swap is shown in
Figure 2. The result o f the swap is show in Figure 3.

2. During this execution there are three comparisons made and there are two swaps. Zeke is not an item of
comparison because the new_taU is set to OF effectively making Jacqui the last item in the list.

3. During this execution there are two comparisons made and there is only one swap. Zeke and Jo are not items
of comparison because the new_tai l is set to OF effectively making Jacqui the last item in the list.

4. During this execution there is only one comparison and no swaps. After the first comparison the so r t_p t r
and the new_tai l were equal. Because no swap took place new_tai l was set to h e a d . When the loop control
mechanism for the outside loop was tested it failed and the sort was complete.

Page 12 3C ONLINE Volume 3, Number 1 January 1996

