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We demonstrate the importance of reducing misses in the translation-lookaside bu�er (TLB) for
obtaining good performance on modern computer architectures. We focus on least-signi�cant-
bit �rst (LSB) radix sort, standard implementations of which make many TLB misses. We give
three techniques which simultaneously reduce cache and TLB misses for LSB radix sort: reducing
working set size, explicit block transfer and pre-sorting. We note that:

� All the techniques above yield algorithms whose implementations outperform optimised cache-
tuned implementations of LSB radix sort and comparison-based sorting algorithms. The fastest
running times are obtained by the pre-sorting approach and these are over twice as fast as
optimised cache-tuned implementations of LSB radix sort and quicksort. Even the simplest
optimisation, using the TLB size to guide the choice of radix in standard implementations of
LSB radix sort, gives good improvements over cache-tuned algorithms.

� One of the pre-sorting algorithms and explicit block transfer make few cache and TLB misses

in the worst case. This is not true of standard implementations of LSB radix sort.

We also apply these techniques to the problem of permuting an array of integers, and obtain
gains of over 30% relative to the naive algorithm by using explicit block transfer.

Categories and Subject Descriptors: F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity|Nonnumerical Algorithms and Problems; E.5 [Data]: Files|Sort-
ing/searching; D.1.0 [Software]: Programming Techniques|General; B.3.2 [Hardware]: Mem-
ory Structures|Design Styles

General Terms: EÆcient sorting algorithms, Locality of reference, Radix sort,Memory hierarchy,
External-memory algorithms

Additional Key Words and Phrases: Cache, Translation-lookaside bu�er (TLB)

1. INTRODUCTION

Most algorithms are analysed on the random-access machine (RAM) model of com-
putation [Aho et al. 1974], using some variety of the unit-cost criterion. This pos-
tulates that accessing a location in memory costs the same as a built-in arithmetic
operation, such as adding two word-sized operands. However, over the last 20 years
or so CPU clock rates have grown explosively, and CPUs with clock rates exceeding
1GHz are available in the mass market. Unfortunately, the speeds of main mem-
ory have not increased as rapidly: today's main memory typically has a latency of
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about 60ns. This implies that the cost of accessing main memory can be 60 times
greater than the cost of performing an operation on two operands which are in the
CPU's registers.
In order to overcome this di�erence in speeds, modern computers have multiple

levels of cache between CPU and memory. A cache is a fast associative memory
which holds the values of some main memory locations. If the CPU requests the
contents of a main memory location, and the value of that location is held in some
level of cache, the CPU's request is answered by the cache itself (a cache hit); oth-
erwise it is answered by consulting the main memory (a cache miss). A cache hit
has small or no penalty (1-3 cycles is fairly typical) but a cache miss requires a
main memory access, and is therefore very expensive. To amortise the cost of a
main memory access in case of a cache miss, an entire block of consecutive main
memory locations which contains the location accessed is brought into cache on a
miss. Thus, a program that exhibits good locality, i.e. one that accesses memory
locations near those which it accessed previously, will incur fewer cache misses and
will consequently run faster. Much recent work has focussed on minimising cache
misses in various algorithms [LaMarca and Ladner 1999; Rahman and Raman 1999;
Sen and Chatterjee 2000; Mehlhorn and Sanders 2000; Frigo et al. 1999]. Asymp-
totically, one can minimise cache misses by simulating external-memory algorithms
[Sen and Chatterjee 2000], for which there is a large literature [Vitter 2000].
There is an important related optimisation which can contribute as much or

more to performance, namely minimising misses in the translation-lookaside bu�er
(TLB). Some papers from the early 90's (see e.g. [Moret and Shapiro 1994]) have
noted the importance of minimising TLB misses when implementing algorithms,
but there has been no systematic study of this optimisation, even though TLB
misses are often at least as expensive as cache misses.
The TLB is used to support virtual memory in multi-processing operating sys-

tems [Hennessy and Patterson 1996]. Virtual memory means that the memory
addresses accessed by a process refer to its own unique logical address space. This
logical address space contains as many locations as can be addressed on the under-
lying architecture, which far exceeds the number of physical main memory locations
in a typical system. Furthermore, there may be several active processes in a system,
each with its own logical address space. To allow this, most operating systems par-
tition main memory and the logical address space of each process into contiguous
�xed-size pages, and stores only some pages from the logical address space of each
active process in main memory at a time. Owing to its myriad bene�ts, virtual
memory is considered to be \essential to current computer systems" [Hennessy and
Patterson 1996]. The disadvantage of virtual memory is that every time a process
accesses a memory location, the reference to the corresponding logical page must be
translated to a physical page reference. This is done by looking up the page table,
a data structure in main memory and would lead to unacceptable slowdown1.
The TLB is used to speed up address translation. It is a fast associative memory

which holds the translations of recently-accessed logical pages. If a memory access
results in a TLB hit, there is no delay, but a TLB miss can be signi�cantly more

1In case the logical page is not present in main memory at all, it is brought in from disk. The
time for this is not counted in the CPU times reported.
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expensive than a cache miss; hence locality at the page level is also very desirable.
In most computer systems, a memory access can result in a TLB miss alone, a
cache miss alone, neither, or both: algorithms which make few cache misses can
nevertheless have poor performance if they make many TLB misses. We argue
later that due to the di�erent characteristics of a cache miss and a TLB miss, these
should be counted separately.
The sizes of cache and TLB are limited by several factors including cost and speed

[Handy 1998]. Cache capacities are typically 512KB to 2MB, which is considerably
smaller than the size of main memory. The size of TLBs are also very limited, with
64 to 128 entries being typical. This means that many algorithms which have good
performance in the RAM model perform poorly in practice. In this paper, we focus
on one such: sorting records with integer keys using least signi�cant bit �rst (LSB)
radix sort.
Radix sorting, applied to integers, consists in viewing w-bit integer keys as dw=re

consecutive r-bit digits. The records are sorted in dw=re passes: in the i-th pass,
for i = 1; : : : ; dw=re we sort the records according to the i-th least signi�cant digit.
There are a number of ways of implementing a single pass in O(n + 2r) time, the
best one in practice being counting sort [Cormen et al. 1990]. We follow current
usage and refer to radix sort plus counting sort as `LSB radix sort'.
LSB radix sort has an overall running time of O(dw=re(n+2r)) for w-bit keys. For

medium-to-large input sizes, LSB radix sort may be considered to be a linear-time
algorithm for practical purposes. However, experimental work has shown that LSB
radix sort, even when tuned for cache performance, fails to outperform good im-
plementations of O(n logn) comparison-based algorithms on modern architectures
[LaMarca and Ladner 1999]. We show that cache-tuned LSB radix sort still has
poor TLB performance. On the other hand, many comparison-based algorithms in-
trinsically have good TLB performance. Hence it is necessary to use models which
incorporate the TLB if one is to get good implementations of LSB radix sort. In
this paper, we de�ne a natural model for analysing TLB performance, and give
three approaches which reduce TLB misses for radix sort: reducing working set
size, explicit block transfer and pre-sorting. We now outline these techniques.
The working set of a program is the the set of pages it accesses at a particular

time. If the program makes random accesses to these pages, and the working set
size is much larger than the size of the TLB, then the number of TLB misses will
be large (in this paper we use the term random access to denote accesses which do
not exhibit locality). Hence, reducing the working set size to about the capacity of
the TLB can greatly reduce the number of TLB misses. In the case of LSB radix
sort, this is accomplished by reducing the radix far below the values suggested
in textbooks [Cormen et al. 1990, p. 179] or those obtained from cache analyses
[LaMarca and Ladner 1999].
Our second technique, explicit block transfer, enforces locality by ensuring that

all random accesses are made only for the purpose of copying blocks of memory
locations. This technique uses an observation of [Sen and Chatterjee 2000] that
given any algorithm A designed for the external-memory model of [Aggarwal and
Vitter 1988], one can design a main-memory based emulation of A which incurs O(1)
cache misses for every I/O operation performed by A. We note that essentially the
same emulation incurs O(1) cache and O(1) TLB misses for each I/O operation
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performed by A. In the external-memory model, good algorithms perform as few
I/O operations as possible|this translates into few cache and TLB misses for the
emulation. Our new algorithm explicit block transfer radix sort (EBT radix sort)
essentially emulates a natural external-memory analogue of counting sort in each
pass. On a more general note, the emulation is a special case of the well-known
trick of copying data to reducing cache conict misses [Gannon and Jalby 1987].
Our result suggests that copying data can also help improve TLB performance.
In our �nal technique, pre-sorting, prior to each pass, the array containing the

keys is `conditioned' by sorting the records within relatively small segments. The
pre-sorting is then used in two di�erent ways, giving two algorithms. In the �rst
algorithm, pre-sorting LSB radix sort (PLSB radix sort), we note that the pre-
sorting brings together keys with equal values which can then be moved in a group,
imparting locality to the `global' sort. In the second, extended-radix PLSB radix
sort (EPLSB radix sort), we use the increased locality a�orded by pre-sorting to
increase the radix size|hence reducing the number of passes|whilst continuing to
incur an acceptable number of cache and TLB misses.
From the theoretical viewpoint, these approaches have di�erent characteristics.

As we note here, LSB radix sort has very poor cache performance on worst-case
problem instances, and reducing the radix size does not alleviate this problem.
However, LSB radix sort can make few TLB misses in the worst case. These
characteristics are shared by EPLSB radix sort. On the other hand, both EBT radix
sort and PLSB radix sort make an asymptotically optimal number of cache misses,
and few TLB misses, in the worst case. None of the algorithms simultaneously
achieves asymptotic optimality for cache and TLB misses in general.
We have tested implementations of these four approaches on a Sun UltraSparc-

II architecture. These implementations generally vary slightly from the algorithm
descriptions which means they may sacri�ce worst-case performance (excepting
PLSB radix sort). All implementations show good speed-ups over highly optimised
implementations of cache-tuned LSB radix sort and cache-tuned comparison-based
algorithms. In our experiments EPLSB radix sort performed the best, running over
twice as fast as cache-tuned LSB radix sort or cache-tuned quicksort.

2. MODELS USED

The basic model we use is the random-access machine, consisting of a CPU and
main memory, augmented with a cache and TLB.

2.1 Cache Model

For the cache, we view main memory as being partitioned into equal-sized blocks
of locations, each consisting of B memory words. Blocks are aligned, that is, they
begin at addresses which are congruent to 0 modulo B. The model assumes a single
cache consisting of S sets each consisting of a lines. Each line can hold a memory
block, and memory block i can be stored in any of the lines in set (i mod S). We
denote by C = aS the capacity of the cache, and a is called the associativity of
the cache. When a = 1, the cache is said to be direct-mapped, and when a > 1,
we say the cache is a-way associative. If the program accesses a location in block
i, and block i is not in the cache, then one of the blocks in the set (i mod S) is
evicted or copied back to main memory, and block i is copied into the set in its
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place. We assume that blocks are evicted from a set on a least recently used (LRU)
basis. Note that for a direct-mapped cache, there is only one block in each set, and
the replacement policy becomes trivial.

The above model simpli�es the architecture of real machines considerably. For
instance, our experiments are performed on a Sun UltraSparc-II, which supports
two levels of cache, as do most other current architectures. However, in the Ultra-II,
the L1 (faster, smaller) cache is write-through, i.e., in case of a cache hit during a
write, the value of the memory location is simultaneously updated in the L1 cache
and in the L2 (slower, larger) cache. Since most cache misses in the algorithms we
consider occur during writes to memory locations, this simpli�cation is reasonable
in our case.

2.2 TLB model

For the TLB, we consider main memory as being partitioned into equal-sized and
aligned pages of P memory words each. A TLB holds address translation informa-
tion for at most T pages. If the program accesses a memory location which belongs
to (logical) page i, and the TLB holds the translation for page i, the contents of
the TLB do not change. If the TLB does not hold the translation for page i, the
translation for page i is brought into the TLB, and the translation for some other
page is removed, again on a least-recently-used (LRU) basis.

We assume that TLB misses and cache misses happen independently, in that a
memory access may result in a cache miss, a TLB miss, neither, or both. This
is because caches are usually physically tagged, i.e., the values stored in cache are
stored according their physical, and not their logical, memory addresses. Hence,
when a program accesses a memory location using its logical address, the address
�rst has to be translated to a physical address before the cache can be checked.
Furthermore, a memory access which results in both a cache miss and a TLB miss
pays the cache miss penalty plus the TLB miss penalty (there is no saving, or loss,
if both kinds of misses occur simultaneously).

Again, this model is a simpli�cation of real TLBs. In principle a TLB miss can
be much more involved than a cache miss, requiring software intervention. Hence
some architectures may provide hardware support for handling TLB misses. For
example, on the Sun Ultra-II, a TLB miss can cost any of: (i) a L2 cache hit (2-3
CPU clock cycles) (ii) a memory access (35-40 cycles) or (iii) a trap to a software
miss handler (hundreds of cycles) [Sun Microsystem 1997, Chapter 6]. Another
simpli�cation is that TLBs almost always implement an approximation to LRU
replacement, rather than a true LRU policy.

2.3 Parameter values and Performance measures

We make a number of assumptions regarding the parameter values to simplify the
analyses. These assumptions normally hold in practice, as explained below (see
[Hennessy and Patterson 1996] for further details). The �rst assumption is that
B;C; P and T are all powers of two. The remaining assumptions are:
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(1) B � P Data is transferred from secondary memory as a page, and
since secondary memory has much higher latency than main
memory a page is much larger than a block. Indeed we should
assume that B � P .

(2) T � C A TLB is fully-associative. This makes the hardware realisa-
tion of a TLB much more complex than a cache with limited
associativity. Furthermore, a TLB hit must be serviced very
quickly. These two factors imply that a TLB must be much
smaller than a cache, and we should assume that T � C.

(3) BC � PT PT < BC implies that some portion of cache will always
lead to a TLB miss, thus e�ectively wasting part of cache.
However, PT > BC makes sense and does occur in practice
(see below).

(4) T � P ,
B � C

These are technical assumptions, which are similar to the tall
cache assumption of [Frigo et al. 1999] and appear to hold in
practice (strictly speaking, we make a `tall cache' and `short
TLB' assumption).

Our experiments are performed on the Sun UltraSparc-II architecture, details of
which can be found in [Sun Microsystem 1997]. The UltraSparc-II has a word size
of 4 bytes, and a block size of 64 bytes, giving B = 16. Its L2 cache, which is
direct-mapped, holds C = 8192 blocks and its TLB holds T = 64 entries. On the
system we use for experiments, the page size is 8192 bytes, giving P = 2048 and
also (coincidentally) giving BC = PT . The relationship between BC and PT can
vary even across systems using the same processor. For example the UltraSparc-II
processor supports di�erent page sizes|the largest being 4MB|giving a maximum
PT of 256MB, but the maximum supported cache size is 16MB.
The main performance measures are the number of instructions, the number of

TLB misses and the number of cache misses. These are all counted separately.
We count TLB and cache misses separately as these have di�erent characteristics.
The advantage of counting instructions and misses separately is that it allows us to
use the coarse O-notation for simple operations and also to analyse the number of
cache or TLB misses more carefully, if necessary. In this respect we are faithful to
both the external-memory approach of [Aggarwal and Vitter 1988] and the cache-
analysis approach of [LaMarca and Ladner 1999]. We make extensive use of the
following, which are restatements of a result of [Sleator and Tarjan 1985]:

Theorem 1. (i) For any given sequence of memory accesses, a TLB which has
size � and uses LRU replacement makes at most �=(� � �� + 1) times as many
misses as a (hypothetical) TLB of size �� � � which knows the memory access
sequence and follows the optimal o�ine replacement policy for that sequence. This
assumes that both the LRU and the optimal TLBs are initially empty.
(ii) For any given sequence of memory accesses, an �-way associative cache which
uses LRU replacement makes at most �=(�� �� + 1) times as many misses as a
(hypothetical) ��-way associative cache with the same number of sets, which knows
the memory access sequence and follows the optimal o�ine replacement policy for
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that sequence. This assumes that �� � � and that both the LRU and the optimal
caches are initially empty.

3. LSB RADIX SORT

In this and the following sections, we will use the following default terminology.
The term key will refer to a single digit, and the term record will denote the integer
which was input to the sorting algorithm plus any associated information.
In radix sorting we view w-bit integer keys as dw=re consecutive r-bit digits. The

records are sorted in dw=re passes: in the i-th pass, for i = 1; : : : ; dw=re we sort
the records according to the i-th least signi�cant digit.
We now review one pass of LSB radix sort. The array containing the records at

the start of the pass is called the source array. The records into which the keys are
sorted is called the destination array. In addition, one or more count arrays are used
to keep auxiliary information. Counting sort comprises of a count phase, a pre�x
sum phase, and a permute phase [Cormen et al. 1990, pp. 175{177]. During the
count phase the algorithm counts the numbers of keys with the same class, where
the class of a key is the value of the digit being sorted on in this pass. During the
pre�x sum phase the starting locations in the destination array are marked o� for
keys with the same class. During the permute phase, each record is moved to its
new location, using the count array to determine the new location for the record.
We will generally focus on one pass of radix sorting.

3.1 Cache misses for LSB radix sort

During the count phase, LSB radix sort makes the following memory accesses:

(1) A sequential read access to the source array, to move to the next key to count.

(2) One or two random read/write accesses to the count array to increment the
count values, depending on whether or not Friend's [Friend 1956] improvement
is implemented (this consists in simultaneously accumulating counts for two
passes in one count phase).

During the permute phase, the algorithm makes the following accesses:

(1) A sequential read access to the source array, to �nd the next record to move.

(2) A random read/write access to the count array, to �nd where to move the next
record and to increment the count array location just read.

(3) A random write to one of 2r active locations in the destination array, to actually
move the record.

An average-case analysis of the count phase in LSB radix sort was provided by
[LaMarca and Ladner 1999; Ladner et al. 1999] for a direct-mapped cache. Although
an approximate average-case analysis of the permute phase was given in [LaMarca
and Ladner 1999], it ignored misses caused by conicts between active locations,
which are essential to Proposition 1 below. In [Rahman and Raman 1999; Mehlhorn
and Sanders 2000] algorithms with memory access patterns which are very similar
to LSB radix sort are studied `on average' 2. We now note that in the worst case

2[Rahman and Raman 1999] gives an average-case approximate analysis based on random input
and [Mehlhorn and Sanders 2000] gives a expected-case analysis based on randomisation by the
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Timings(sec)

n 220 221 222 223 224 225

pathological (r=11) 0.44 0.94 1.92 4.37 7.70 15.40

random (r=11) 0.31 0.65 1.33 3.01 5.47 10.89

Fig. 1. Running times for one pass of LSB radix sort using 11-bit radix for random 32-bit unsigned
integers and the pathological input.

LSB radix sort makes many misses.

Proposition 1. For any �xed cache associativity a � 1, one pass of LSB radix
sort with radix r makes 
(n) cache misses in the worst case whenever 2r > a.

Proof. For convenience let n be a power of two. Consider just the random
write accesses (step (3) above) in the permute phase of LSB radix sort and let
the input consist of the sequence 0; 1; : : : ; 2r � 1 repeated n=2r times. With this
input, the 2r active blocks will be mapped into a total of maxf1; BS=(n=2r)g sets,
giving minf2r; n=(BS)g active locations mapped to each set. Provided that n >
aBS = BC, the number of active blocks mapped to each set will exceed a. Owing
to the round-robin nature of accesses to the active data blocks mapped to a set, all
accesses to active locations will be misses, even ignoring other conicts. This gives
a minimum of n misses for a single permute phase in the worst case.
Note that the count phase incurs O(n=B) misses in the worst case whenever a � 2

and 2r � BC=2 (we require that 2r � BC=4 if Friend's improvement is used).

The construction of Proposition 1 can easily be generalised to get inputs which
have bad performance on several successive passes:

Proposition 2. For any �xed cache associativity a � 1, in the worst case, LSB
radix sort with radix r makes 
(n) cache misses in each of bw=rc passes, provided
2r > a, when sorting w-bit keys.

Proposition 3. For any �xed cache associativity a � 1 and n a power of 2,
LSB radix sort with radix r makes 
(n) cache misses in each of b(logn)=rc passes
on the input 0; 1; : : : ; n� 1, provided 2r > a.

From the asymptotic viewpoint, the results from [Rahman and Raman 1999;
Mehlhorn and Sanders 2000] suggest that `on average' if we have 2r = O(C=B),
then each pass of radix sort makes an optimal O(n=B) expected misses even on a
direct-mapped cache. For a cache with associativity a [Mehlhorn and Sanders 2000]
suggests that the expected number of misses is O(n=B) for 2r = O(C=B1=a). The
worst-case input increases this to �(n) misses per pass even when r is very small,
i.e. when 2r > a.
This di�erence is evident in practice too: Fig 1 compares the running times for

one pass of LSB radix sort using a 11-bit radix when the input data is the worst-
case described above and random data. It shows that the algorithm is up to 45%
slower on worst-case data than on random input for radix 11.

algorithm and an oblivious adversary.
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3.2 TLB misses in LSB radix sort

We now give calculate the number of TLB misses in the count phase and permute
phase of LSB radix sort in the worst case:

Proposition 4. The number of TLB misses in the count phase of one pass of
LSB radix sort with radix r when sorting n keys is:

� (dn=P e+W )

�
T

T �W

�
; if W � T � 1 (1)

� dn=P e+ n; if W > T � 1: (2)

in the worst case, where W = d2r=P e.
Proof. During the count phase, the algorithm accesses the following working

set of pages: (i) one active page in the source array and (ii) W = d2r=P e count
array pages. Thus, if W + 1 � T , an optimal algorithm with a TLB of size W + 1
will make no more than dn=P e +W misses (to bring in the count array pages as
well as to bring in the successive active source array pages.) Applying Theorem 1
proves (1).
If W + 1 > T and T = 1 then clearly all 2n memory accesses cause misses

whatever replacement policy is used. If T > 1 then the active source array page
is always in the TLB, but at least one count array page is always not in the TLB,
and in the worst case, the count array page which is not in the TLB will always
be accessed (a round-robin access pattern suÆces for this). Thus all n accesses to
count array pages are misses, and we add the compulsory misses for source array
pages to get (2).

The following proposition is proved analogously:

Proposition 5. The number of TLB misses in the permute phase of one pass
of LSB radix sort with radix r when sorting n keys is:

� (dn=P e+W )

�
T

T �W

�
; if W � T � 1 (3)

� dn=P e+ n; if W > T � 1: (4)

in the worst case, where W = d2r=P e+minf2r; dn=P eg.
This shows that provided T � P (which is usually the case) there is a sharp

threshold for TLB misses, going from O(nT=P ) when the working set �ts into the
TLB to 
(n) when it does not. Hence the radix should be chosen small enough
that the former case holds.

3.3 Implementing LSB radix sort

3.3.1 Reducing working set size. From the above discussion, we can reduce TLB
misses by reducing r to the point where the working set is suÆciently small. Clearly,
the permute phase is the bottleneck in this respect, and we should choose r such
that d2r=P e+minf2r; n=Pg � T � 1. Plugging in the Ultra-II values of P = 2048
and T = 64, we get that for n � PT � BC we should choose r = 5.
Of course, one may prefer that an average-case argument determines the radix

size, especially since LSB radix sort anyway has poor worst-case cache behaviour.
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We now heuristically analyse the permute phase, as it is the major contributor to
the TLB misses, to calculate the number of TLB misses for r = 6; : : : ; 11. For all
these values, the count array �ts into one page and we may assume that the count
page and the current source page, once loaded, will never be evicted. We further
simplify the process of accesses to the TLB and ignore disturbances caused when
the source or one of the destination pointers crosses a page boundary (as these are
transient). With these simpli�cations, TLB misses on accesses to the destination
array may be modelled as uniform random access to a set of 2r pages, using an
LRU TLB of size T � 2. The probability of a TLB miss is then easily calculated to
be (2r � (T � 2))=2r. This suggests that choosing r = 6 on our Ultra-II still gives
a relatively low miss rate on average (miss probability 1=32), but choosing r = 7 is
signi�cantly worse (miss probability 1=2).

Experiments suggest that on random data, for r = 1; : : : ; 5 a single permute phase
with radix r takes about the same time, as expected. Also, for r = 7 the permute
time is|as expected|considerably (about 150%) slower than r � 5. However
even r = 6 is about 25% slower than r � 5. This is probably because in practice
T is e�ectively 61 or 62|it seems that the operating system reserves a few TLB
entries for itself and locks them to prevent them from being evicted. Even using
the simplistic estimate above, we should get a miss probability in the 1=13 to 1=16
range.

The choice r = 5 which guarantees good TLB performance turns out not to give
the best performance on random data: it requires seven passes for sorting 32-bit
data, at the end of which the keys are in a temporary array and have to be copied
back into the original input array. The following sequence of radices saves one
pass, avoids the extra copy at the end and also has other advantages noted below:
5; 5; 6; 5; 5; 6.

3.3.2 Speeding up the count phase. The very small radix sizes suggested in the
previous section mean that the number of passes over the data can be very large.
In this situation the count phase (which normally contributes little to cache or
TLB misses) can be a signi�cant part of the computation. We now discuss ways of
speeding up the count phase.

The �rst is Friend's improvement [Friend 1956], which coalesces two count phases
into one. More precisely, the frequencies of two successive digits (say the ith and
i+1st digits) are counted in one pass by updating two count arrays for each record
in the input. An immediate extension is to count frequencies for k > 2 passes
in one phase, k-tuple counting. The main disadvantage is that accessing multiple
count arrays may cause conict misses, but for the small radix values we consider,
the count arrays are miniscule and do not interfere signi�cantly with each other.
For r = 6 and 32-bit data, we found that counting all six digits in one pass was
considerably faster than three passes each counting two digits.

We found the following method to be still faster, as it greatly reduced the in-
struction count. To count the i-th and i+1-st digit simultaneously, we concatenate
the i-th and i + 1-st digits (giving a 2r-bit number) and increment a single count
array of size 22r. In practice of course, we would simply mask out the relevant
2r bits in one step. From the 2r-bit counts, frequencies for the i-th and i + 1-st
passes are easily extracted. This approach can extend to coalescing three or more
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count phases into one. For example, for the radix sequence mentioned at the end of
Section 3.3.1, we can obtain all six counts in one pass, by incrementing two 16-bit
arrays for each key. The �rst array would implicitly contain frequencies for the
three least sign�cant digits (totalling 6 + 5 + 5 = 16 bits), and the second likewise
for the three most signi�cant digits. Note that this approach may increase conict
misses, and so may not work for all architectures.

4. EXPLICIT BLOCK TRANSFER

Let C(a;B;C; P; T ) be the model described in Section 2, where a is the associativity
of the cache, B is the block size, C is the capacity of the cache in blocks, P is the
page size and T is the number of TLB entries. Recall that the model assumes that
BC � PT .
Let I(B;M) denote the following model, which is the external-memory model of

[Aggarwal and Vitter 1988], specialised to disallow parallel disk access. There is a
fast main memory, which is organised as M=B blocks m1; : : : ;mM=B of B words
each and an unbounded secondary memory, which is organised as blocks d1; d2; : : :
of B words each as well. An algorithm in this model performs computations on
the data in main memory, or else it performs an I/O step, which copies a speci�ed
block from main memory into a speci�ed block in secondary memory or vice versa.
As noted in [Sen and Chatterjee 2000], an algorithmA designed for the I (B;BC=2)

model can be emulated by an algorithm A0 in the C(a;B;C; P; T ) model, such that
A0 incurs at most O(1) (amortised) cache misses for every I/O performed by A.
Their emulation is quite simple: an array Mem of size C=2, each entry of which
can hold B words, emulates the main memory of A, with mi corresponding to
Mem[i]. The secondary memory of A is emulated by another array D, each en-
try of which can also hold B words, and an I/O operation is emulated by copying
Mem[i] to D[j] or vice versa. In order to avoid conict misses during copying if
Mem[i] and D[j] map to the same set, the copying may be done through an inter-
mediate bu�er of B words. Two such bu�ers may be needed; it suÆces to extend
Mem by two elements and use Mem[C=2+ 1] and Mem[C=2+ 2] as these bu�ers.
The (extended) arrayMem occupies at most T=2+1 pages. If we assume that the

TLB has only T=2+1 entries but that TLB replacement is done by an optimal o�-
line algorithm, the optimal o�-line algorithm need never make more than 2 misses
for each I/O performed by A|it can simply swap in the appropriate page for the D
array, evicting a Mem page which will not be needed immediately, and swap back
the Mem page just evicted at the expense of the D array page once the copying is
complete. Since a LRU TLB with T entries never makes more than twice as many
misses as an optimal TLB with T=2+1 entries on a given sequence of page accesses
(Theorem 1), it follows that the emulation makes O(I) TLB misses over the course
of the emulation, if A performs I I/O operations. Combining this with the result
of [Sen and Chatterjee 2000], we have:

Theorem 2. An algorithm A in the I(B;BC=2) model which performs I I/Os
and t operations on data in main memory can be converted into an equivalent one
A0 in the C(a;B;C; P; T ) model which performs at most O(t + I � B) operations,
O(I) cache misses and O(I) TLB misses.

The external-memory algorithm for LSB radix sort is the obvious one. The radix
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r is chosen so that 2r � M=(2B); this enables bu�ers of B keys to be maintained
in main memory for each of the 2r classes during the permute phase, while leaving
space for auxiliary data structures such as the count array and the current source
array block. We describe only the permute phase, and assume that the count array
is already stored in main memory. The algorithm reads successive blocks from the
source array (which is stored in secondary memory), and moves each key in the
current source array block to its main-memory bu�er. When the bu�er is full, it is
copied out into the appropriate block of the destination array (which is also stored
in secondary memory). With a radix chosen as above and provided n � M , the
algorithm performs O(n=B) I/Os per pass. By Theorem 2 we get:

Corollary 1. For any associativity a � 1, the emulation of external-memory
radix sort with radix r � log(C=4) incurs O(n=B) cache and TLB misses per pass
in the worst case.

In the future we refer to this as EBT (explicit block transfer) radix sort.

4.1 Implementing EBT Radix Sort

When implementing EBT radix sort, one may dispense with some of the steps in
the emulation. The probability of conicts between Mem and D in a block copy
on random input seems (subjectively) so low that one should copy blocks directly,
rather than through intermediate bu�ers. If pathological inputs are a concern then
one should randomise the starting location ofMem as noted in [Sen and Chatterjee
2000].
We also limit the use of the emulation to critical parts of the algorithm. In e�ect,

the algorithm we implement is normal LSB radix sort, but with the permute phase
modi�ed as follows. We maintain an array of 2r bu�ers, all of which can hold 
(B)
keys. When moving keys in the permute phase, we do not do so directly, but instead
move the key from the source array to the bu�er corresponding to its class. When
the bu�er is full, all keys in it are copied as a block to their �nal locations in the
destination array.
In practice one could probably use larger radix values such as r = log(C=2). In

our case, this would correspond to using r = 12 instead of r = 11. Since the number
of passes is not reduced for 32-bit data, we stayed with the smaller radix.

5. PRE-SORTING

In this section we discuss two algorithms both of which pre-sort the keys in small
groups to increase locality. Unless stated explicitly otherwise, we take the word
`key' in this section to mean the r-bit digit being sorted in one pass of PLSB or
EPLSB radix sort.

5.1 PLSB Radix Sort

One pass of PLSB radix sort with radix r works in two stages. First we divide the
input array of n keys into contiguous segments of s � n keys each. Each segment is
sorted using counting sort (a local sort) after which we sort the entire array using
counting sort (a global sort). In each pass the time for sorting each of the dn=se
local sorts is O(s + 2r) time and the time for the global sort is O(n + 2r), so the
running time for one pass of PSLB radix sort is O(n+ n(2r)=s).
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An obvious optimisation is to accumulate counts for the global sort at the end of
the count phase of each local sort. So the structure for the algorithm is as follows,
where Input and Temp are arrays of size n and GlobalCount and LocalCount are
arrays of size 2r and the segments are numbered from 0; : : : ; dn=se � 1:

1 initialise GlobalCount

2 for i = 0; : : : ; dn=se � 1 do

2.1 initialise LocalCount

2.2 count frequencies of key values in segment i of Input

2.3 accumulate values in GlobalCount

2.4 prefix sum LocalCount

2.5 permute from segment i of Input to segment i of Temp

3 prefix sum GlobalCount

4 permute globally from Temp to Input

The intuition for the algorithm is that each local sort groups keys of the same class
together and during the global sort we move sequences of keys to successive locations
in the sorted array, thus reducing TLB and conict misses between accesses to the
destination array. We now give some more detailed intuition. We denote by 
the quantity s=2r, and we will require that  � 2. An immediate consequence is
that one pass of PLSB radix sort runs in O(n) time. To minimise the operation
count, we would like to choose r as large as possible, but this pushes up s. To
keep cache and TLB misses to a minimum in the local sorts, we would like the
segments of the source and destination arrays in each local sort to �t into cache
and TLB-addressable pages. This suggests that we must set s � BC (the analysis
below assumes that s � BC=2).
We move straightaway to the global permute phase now, since this was previously

the source of most cache and TLB misses. An elementary observation is that an
array of k consecutive items will span at most dk=P e+1 pages or dk=Be+1 blocks,
and hence (if there are no pathological conict misses) copying k consecutive items
from the source array to consecutive locations in the destination array will incur at
most this many cache and TLB misses in destination array accesses. If ki;j is the
number of keys in class i in segment j, then the total number of destination array

TLB misses would be roughly
P

2
r�1
i=0

Pn=s
j=0dki;j=P e + 1 � O(n=P + (n=s) � 2r) =

O(n=P+n=). Similarly, the number of cache misses would be about O(n=B+n=).
This suggests that we need  = 
(B) for an optimal number O(n=B) of cache
misses, and the number of TLB misses would then also be O(n=B). This says that
the radix r should satisfy 2r = O(C), which is similar to the radix limitations of
explicit block transfer.

5.1.1 Worst-case cache and TLB analysis for PLSB. We now give a worst-case
cache and TLB miss analysis for PLSB. To determine the number of cache and
TLB misses during the local sorts our approach is to describe our own cache and
TLB replacement policies and determine the worst-case number of cache and TLB
misses using these policies. Given that using an optimal replacement policy would
make no more misses we calculate an upper bound on the cache and TLB misses
given an LRU replacement policy.
Without loss of generality we assume the cache and TLB are empty at the start
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of the local sorts, at the start of the pre�x sum of GlobalCount and at start of the
global permute.

Theorem 3. For s = CB=2 and  � 2, the worst-case number of cache misses
in one pass of PLSB when sorting n keys with an a � 4 ways associative cache is
at most:

C

2
+
2n

B
+
5n


+ 1 +

a

a� da=2e � da=(2)e
�
C


+
3n

B
+

n

B
+

2n

CB
+ 5

�

where s is the number of keys in a local sort,  = s=2r and r is the radix.

Proof. During each local sort our replacement algorithm reserves suÆcient ways
to keep LocalCount in cache once it has been loaded. Our replacement algorithm
also reserves suÆcient ways to keep a segment of Temp, once loaded, in cache during
step 2.5. It also reserves 1 further way for loading a segment of Input in cache during
steps 2.2 and 2.5, it uses the same way to load GlobalCount during step 2.3. Since
C = Sa and s = BSa=2, LocalCount is 2r=B = Sa=(2) blocks in size and our
replacement algorithm requires da=(2)e ways for LocalCount. Each segment of
Temp is Sa=2 blocks in size and our replacement algorithm requires da=2e ways for
a segment of Temp.
With our replacement algorithm, once LocalCount has been loaded into cache for

the �rst local sort it will remain in cache for all further local sorts. An upper bound
on the cache misses for the local sorts in one pass of PLSB using our replacement
algorithm is derived as follows:

|dSa=(2)e � C=(2) + 1 misses for loading LocalCount once.

|dn=Be misses for loading Input into cache over all local sorts in step 2.2

|d2n=(BSa)e�dSa=(2)e � n
B +

2n
CB + C

2 +1 misses over all local sorts for loading
GlobalCount into cache in step 2.3.

|2dn=Be cache misses for loading Input and Temp into cache over all local sorts
in step 2.5.

Over all local sorts our replacement algorithm uses a� = da=2e+ da=(2)e+1 ways
and there are at most:

C


+
3n

B
+

n

B
+

2n

CB
+ 5 (5)

cache misses. Using Theorem 1 we get that the number of cache misses in an a-way
associative LRU cache is at most:

a

a� da=2e � da=(2)e
�
C


+
3n

B
+

n

B
+

2n

CB
+ 5

�
(6)

For the pre�x sum of GlobalCount in step 3 and the global permute in step 4 we
do not utilise the optimal cache. During the pre�x sum of GlobalCount there are�

Sa

2

�
� C

2
+ 1

cache misses. For the global permute, we divide the memory accesses into (n=s) �
m = n= epochs. In epoch (i; j), for 0 � i � m�1 and 0 � j � n=s, we move the ki;j
keys with value i from local sort j to their �nal destination. In this epoch we access
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at most 2(dki;j=Be+1) blocks from the Input and Temp arrays in all, and one block
from the count array. The number of misses is at most 2dki;j=Be+3 � 2ki;j=B+5.
Summing over all epochs we get that the number of cache misses for the global
permute is at most:

m�1X
i=0

n=sX
j=0

(2ki;j=B + 5) =
2n

B
+
5n


(7)

Summing the cache misses for the local sorts, global pre�x sum and global per-
mute gives the worst-case number of cache misses for one pass of PLSB.

Corollary 2. If  = 
(B) then there are O(n=B) cache misses in one pass of
PLSB in an a-way associative cache with LRU replacement policy.

Theorem 4. For s = BC=2 � PT=2 and  � 2 the worst-case number of TLB
misses in one pass of PLSB when sorting n keys using a TLB of size T � 4 is at
most:

T

2
+
2n

P
+
5n


+ 1 +

T

T � dT=2e � dT=(2)e
�
T


+
3n

P
+

n

P
+

2n

PT
+ 5

�

where s is the number of keys in a local sort,  = s=2r and r is the radix.

Proof. During each local sort our replacement algorithm reserves suÆcient TLB
entries to keep page translations for LocalCount, once loaded, in the TLB during
steps 2.1, 2.2, 2.4 and 2.5. Our replacement algorithm also reserves suÆcient TLB
entries to keep page translations for a segment of Temp, once loaded, in the TLB
entries during 2.5. It also uses 1 further TLB entry for the page translations for
a segment of Input during steps 2.2 and 2.5, it uses the same TLB entry to load
GlobalCount during step 2.3. Since s = BC=2 � PT=2, LocalCount requires
at most 2r=P = T=(2) pages and our replacement algorithm requires at most
dT=(2)e TLB entries for LocalCount. Each segment of Temp is at most T=2 pages
in size and our replacement algorithm requires at most dT=2e TLB entries for a
segment of Temp.
With our replacement algorithm, once translations for LocalCount have been

loaded into the TLB for the �rst local sort they will remain there for all further
local sorts. An upper bound on the TLB misses for the local sorts in one pass of
PLSB using our replacement algorithm, is as follows:

|dT=(2)e misses for LocalCount in step 2.1 for the �rst local sort.

|dn=P e misses for Input over all local sorts in step 2.2

|d2n=(PT )e�dT=(2)e � n
P+

2n
PT+

T
2+1misses over all local sorts for GlobalCount

in step 2.3.

|2dn=P e misses for Input and Temp over all local sorts in step 2.5.

Over all local sorts our replacement algorithm uses T � = dT=2e+dT=(2)e+1TLB
entries and there are at most:

T


+
3n

P
+

n

P
+

2n

PT
+ 5 (8)
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TLB misses. Using Theorem 1 we get that the number of TLB misses using a LRU
TLB of size T is at most:

T

T � dT=2e � dT=(2)e
�
T


+
3n

P
+

n

P
+

2n

PT
+ 5

�
(9)

For the pre�x sum of GlobalCount in step 3 and the global permute in step 4 we
do not utilise results for optimal TLB. There are�

T

2

�
� T

2
+ 1

TLB misses for the pre�x sum of GlobalCount. For the global permute, we divide
the memory accesses into (n=s) �m = n= epochs. In epoch (i; j), for 0 � i � m� 1
and 0 � j � n=s, we move the ki;j keys with value i from local sort j to their �nal
destination. In this epoch we access at most 2(dki;j=P e+1) pages from the Input
and Temp arrays in all, and one page from the count array. The number of misses
is at most 2dki;j=P e+ 3 � 2ki;j=P + 5. Summing over all epochs we get:

m�1X
i=0

n=sX
j=0

(2ki;j=P + 5) =
2n

P
+
5n


(10)

Summing the TLB misses for the local sorts, global pre�x sum and global permute
gives the worst-case number of TLB misses for one pass of PLSB.

Corollary 3. If  = 
(B) then there are O(n=B) TLB misses in one pass of
PLSB.

5.1.2 Implementing PLSB Radix Sort. Clearly, from the analyses above, we would
like generally to get a large value of  = s=2r, as this tends to reduce cache and
TLB misses in the global permute. The analysis above used s = (BC)=2, and we
now review the local sort phase in order to �nd the largest `practical' value of s.
To keep TLB misses low we want to ensure that the working set of a local sort

can comfortably be held in TLB. On the Sun Ultra-II the TLB has size 64, so we
should limit s to be at most kP for some integer k in the high 50s; this allows a
couple of system TLB entries, a source page entry and a handful of count page
entries all to �t in TLB. On pathological data, choosing s > (BC)=2 can give many
conict misses in the local sorts, even on a 4-way associative cache. However, by
using randomisation, we ensure that no single input gives a bad running time, and
so our algorithm has few expected conict misses on any input. More precisely,
by ensuring that each of the source and destination arrays start independently at
locations which are uniformly distributed over the range f0; : : : ; BC � 1g, we get
very few conict misses in the local sorts even on direct-mapped caches, regardless
of the input (this is easily shown using arguments similar to those of [Mehlhorn and
Sanders 2000]). A side e�ect of the randomisation is that there are no pathological
inputs for the global permute on a direct-mapped cache.
We use a value s � 117; 400, corresponding to k between 57 and 58. This

particular number is `good' in some way for EPLSB radix sort and we choose it
again in PLSB radix sort for convenience, although it has no signi�cance for PLSB
radix beyond that already discussed. Also, experimentally we determined that
r = 11 is the best radix to use for sorting 32-bit data. This gives  � 57 � 3:5B).
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One e�ective low-level optimisation for PLSB is that during the global permute,
we do not use the standard counting sort permute algorithm. Instead, before moving
a record from Temp back to Input in the global permute, we �rst scan ahead in
Temp to �nd a maximal set of k consecutive records which have the same key value
as the next record to be moved. After moving these k records as a block we increase
the relevant count array location by k. This saves signi�cantly on instructions and
also on writes to the count array (even though this is not part of our model, writes
in general are a little expensive as they are handled by the L2 cache rather than
the L1 cache). After this optimisation, the global permute is less than 30% slower
than a straight copy from Temp to Input.

5.2 EPLSB Radix Sort

In EPLSB radix sort with radix r, each pass is again done in two stages. We use
the term `global key' to refer to the r-bit sort key for a particular pass, and we use
the term `local key' to refer to the r0 most signi�cant bits of the global key, where
r0 � r is a parameter whose value we will choose later. If we choose r0 = r EPLSB
radix sort essentially reduces to PLSB radix sort.
We assume again that n � BC. First, as in PLSB radix sort, we divide the input

array of n records into contiguous segments of s � n records each, and sort each
segment. The local sorts now only sort according to the local key, but the global
permute moves records to their �nal location according to the global key. During
the global permute, we again process blocks of records from each segment, where
a block consists of successive records with the same local key value. Although it
is no longer the case that all records in a block are moved together, they belong
to at most � = 2r�r

0

di�erent (global) classes, which limits the number of active
locations in the destination array. Intuitively, we can let � = �(T ) and still keep
TLB misses low, thus extending the radix size of PLSB by a factor of roughly T .
A more precise description of the algorithm follows. Input and Temp are arrays

of size n. Input contains the input records, and at the end of the pass, Input
will once again contain the records in sorted order with respect to the global key.
GlobalCount and LocalCount are arrays of size 2r and 2r

0

respectively, and the
segments are numbered from 0; : : : ; dn=se � 1.

1 /* perform all local sorts */

1.0 for i = 0; : : : ; dn=se � 1 do

1.1 initialise LocalCount

1.2 count frequencies of local key values in segment i of Input

1.3 prefix sum LocalCount

1.4 permute records from segment i of Input to segment i of Temp

/* Step 1.4 moves records according to local key value */

2 Initialise GlobalCount

3 Count frequencies of global key values.

4 /* global permute */

4.0 for j = 0; : : : ; 2r
0

� 1

4.1 for i = 0; : : : ; dn=se � 1

4.2 move all records with local key value j in segment i

of Temp to their final location in Input.
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/* Step 4.2 moves records according to global key value */

We now �x some parameter choices. We choose s = (BC)=2, r0 � logC and
r � minflog(BC=2); r0 + log(T=2)g. This ensures that  = s=2r

0 � B=2 and
� � T=2.
We now estimate the number of instructions, cache and TLB misses in one pass

of EPLSB radix sort. We begin with instruction counts. Step 1 takes O(n +
n(2r

0

)=s) = O(n + n=) = O(n) time. Steps 2 and 3 take O(n + 2r) = O(n) time,
since 2r � BC � n. Letting ki;j denote the number of keys with local sort key value

j in segment i of the input, Step 4 takes
P

2
r
0

�1
j=0

Pdn=se
i=0 (ki;j + 1) = O(n + n=) =

O(n) time, giving an overall bound of O(n) time for one pass of EPLSB radix sort.
We now move to TLB misses. The analysis of the TLB misses for Step 1 is

analogous to the analysis of Step 2 of PLSB, and we can conclude that there are
O(n=B) misses in this step. Steps 2 and 3 have negligible TLB misses (note that
2r � BC=2, so the count array requires at most T=2 pages). In Substep 4.2, note
that we are moving elements belonging to � di�erent global key classes in each
iteration of the loop of Step 4.0. The count information for these classes is spread
across at most two GlobalCount pages, as � � T � P . We now calculate the
number of misses made by an optimal TLB of size �+3. The optimal TLB would
make no more than the following misses:

|By always evicting a page from Input when an access to Input causes a miss, at

most
P2

r
0

�1
j=0

Pdn=se
i=0 dki;j=P e+1 � n=P +2n= = O(n=B) misses due to accesses

to Input, where ki;j is as above.

|Similarly, accesses to Temp cause at most O(n=P +� �n=s) misses. Since �n=s �
2�n=(BC) � 2nT=(BC) = O(n=B), the total number of misses is again O(n=B)
(and should usually be considerably smaller, as T � C).

|At most d2r=P e = O(n=P ) misses for accesses to GlobalCount.

Hence the minimum size of the optimal TLB required to achieve O(n=B) misses is
no more than � + 3. This is at most 2T=3 if P and T are suÆciently large, so an
LRU TLB of size T will also make O(n=B) misses in the worst case.
We now turn to cache misses. As s = (BC)=2 and 2r � C, the number of misses

in Step 1 is O(n=B) in the worst case. For a direct-mapped cache this requires
Input and Temp to be aligned so that corresponding segments of these arrays are
mapped to distinct parts of the cache; we can dispense with this assumption for an
a-way associative cache with a � 4.
In Step 3 the number of cache misses is O(n=B) in the worst case if the cache

is at least two-way associative (recall that 2r � (BC)=2 so the count array can
occupy at most one way of each set).
In Step 4, again randomising the start of Temp and Input reduces the number

of conict misses between (i) GlobalCount and Temp; (ii) Input and Temp and
(iii) GlobalCount and Input to negligible levels. However, this does not solve the
problem of conicts between the T=2 active locations in Input, which can conict
with each other. One solution to this problem is to randomise the start of each
(global key) class, as suggested in [Mehlhorn and Sanders 2000]. If this is done,
then it follows from the analysis there that the number of conict misses should be
small as T=2� C so there are O(n=B) misses.
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5.2.1 Implementing EPLSB radix sort. For the UltraSparc-II parameters, the
maximum permissible value of r is 16 (since BC=2 = 216). As is the case for PLSB,
it is bene�cial to EPLSB to have a value of  as large as possible. This means
making s as large as possible and r0 as small as possible. The smallest value for r0

which gives few worst-case TLB misses is 16�log(T=2) = 11. As in PLSB radix sort
we randomise the start locations of the source and destination arrays; this reduces
the number of cache conict misses in Steps 1-3 to negligible levels (according to
our model).
We again choose s to be about 58P to keep TLB misses in local sorts at a

minimum. Here, however, the value of s also slightly a�ects the global permute, so
s is �xed later.
We optimise the global counts by scanning the array Temp for the purpose of

global counting, rather than Input. This improves performance by improving the
locality of the global counts in a way that our model appears not to capture. A
further improvement is to perform global counts on segment i of Temp right after
the local sort for segment i, as most of Temp will be in cache.
We make no special optimisations to remove the main problem with the global

permute, namely that EPLSB radix sort is susceptible to pathological data. The
only possibility, as noted above, is to randomise the start of each class as in
[Mehlhorn and Sanders 2000]. Using their approach directly would have a pro-
hibitive space cost, but since there are only only T=2 active destination pointers in
EPLSB radix sort, it is possible that one may not need to randomise by as much as
suggested in [Mehlhorn and Sanders 2000]. It would be interesting to explore this
aspect further.
As we will in the section on experimental results, in EPLSB radix sort worst-

case inputs cause many TLB misses during the global permute when the number
of active destination pointers � = T . We also see that since � � C and the
cache is physically mapped the theoretical worst-case input does not actually cause
many more cache misses than random inputs. This justi�es our design descision to
make EPLSB radix sort robust against worst-case inputs for TLB misses but not
for cache misses.
We do incorporate a second-tier optimisation for the global permute. The global

permute for EPLSB radix sort makes several `passes' over the Temp array (each pass
corresponds to an iteration of the loop of Step 4.0). Each `pass' moves a relatively
small group of keys from a segment to their �nal destinations, before moving on
to the next segment. As the end of a group may not lie on a cache boundary in
general, it would be helpful if the block which contains the end of the group stays
in cache for the next `pass': this saves an extra miss for each block. For random
data this can be signi�cant: each group is typically only 3:5 cache blocks long, so
the number of Temp array misses would be reduced by about 20%.
In practice the number of segments is small (less than 300 for n = 32000000)

compared to C, so active Temp blocks could easily stay in cache between `passes'.
Intuitively the chances of this happening are improved if the starts of the segments
were mapped to blocks which are roughly equally spaced in cache. Some values
of s are better than others at achieving this: in [Rahman and Raman 1999] it is
noted that values such as s = (1 � 1=(9 + ��1))BC � 117; 400 � 57:3P , where
� = (1 +

p
5)=2, are provably good for this. This is the value used in our code.
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This optimisation does not always help, but it never hurts either.

6. ASYMPTOTIC NUMBER OF CACHE AND TLB MISSES

It has been shown [Aggarwal and Vitter 1988] that any algorithm for sorting n
keys must make 
(n=B logC(n=B)) cache misses. A direct reduction from their
argument shows that the number of TLB misses for sorting must be at least

(n=P logT (n=P )).
These lower bounds, however, apply only when all n! permutations of the input

keys are possible. When (stably) sorting w-bit keys, the number of possible per-
mutations is at most 2wn, which could be smaller or greater than n!. In particular,
if the radix r is chosen appropriately, then one pass of r-bit LSB radix sort can be
accomplished in O(n=B) cache misses, or O(n=P ) TLB misses. This has also been
observed by [Matias et al. 2000], who also show that 
((n=B) logC minf(n=B); 2wg)
cache misses are necessary to sort w-bit integers. Again by reduction from their
argument 
((n=P ) logT minf(n=P ); 2wg) TLB misses are necessary to sort w-bit
integers.
We now compare the asymptotic performance of the algorithms. Recall that we

assume that T � C, B � P , BC � PT and B � C. First, we consider the case
when T is not too small, i.e., logT = �(logC). In this case it suÆces for optimality
that the algorithm makes O(n=B) cache and O(n=P ) TLB misses per pass, where
each pass sorts according to a radix which is at least 
(logT ). We �rst note:

Proposition 6. Assuming an a-way associative cache for some a � 2, LSB
radix sort makes an optimal expected number of cache and TLB misses on any
input, if log T = �(logC).

Proof. We choose the radix of LSB radix sort as r = (1 � 1=a) logT � 1.
Since r � log(T=2), standard LSB radix sort makes O(n=P ) TLB misses per pass
in the worst case. Also, 2r � T 1�1=a � C1�1=a � C=B1=a. If we assume that
the algorithm uses randomised memory allocation as described in [Mehlhorn and
Sanders 2000], it follows from the results there that if 2r � C=B1=a, LSB radix sort
makes O(n=B) expected cache misses per pass on an a-way associative cache on
any input. Observing that r = 
(logC) completes the proof.

An analogue for worst-case behaviour follows:

Proposition 7. Assuming an a-way associative cache for some a � 2, one can
sort incurring an optimal expected number of cache and TLB misses on any input,
if logT = �(logC).

Proof. The algorithm is essentially PLSB radix sort modi�ed to use EBT radix
sort for the local sorts. Firstly, the input is divided into segments of size PT=4
and each segment is locally sorted with respect to the current r-bit digit using
EBT radix sort, where r = logT � c � logC � O(1) for some constant c � 0. By
choosing c large enough we can ensure that all pages for each local sort �t into the
TLB. In this case, EBT radix sort incurs O(n=B) cache and O(n=P ) TLB misses,
summed over all local sorts. The global permute then moves keys to their �nal
destination as before. Since  = 
(P ) here, the global permute also makes O(n=B)
cache and O(n=P ) TLB misses per pass, provided a � 2 by Theorems 3 and 4. As
there are �(w= logC) passes, the proposition follows.
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If logT = o(logC) we do not know how to simultaneously get asymptotically
optimal TLB and cache misses. EBT radix sort or PLSB radix sort with radix
� logC for some constant 1 � � > 0 makes O(n=(BC1��)) page misses per pass,
while keeping the number of cache misses asymptotically optimal. However, the
model does not rule out P � BC, so this can be non-optimal. Approaches based
on choosing a radix of �(logT ) yield TLB-optimality but make too many cache
misses.

7. EXPERIMENTAL RESULTS

The following table describes the algorithms that we tested and gives the names we
will use for them. All algorithms were coded in C and all code compiled using gcc

2.8.1. Our experiments were run on a Sun Ultra II with 2� 300 MHz processors
and 1 GB of memory.

Name Description

LSBr LSB radix sort using r-bit radix with d32=re-tuple counting

FLSBr LSB radix sort using r-bit radix with Friend's improvement

LSB556 LSB radix sort where a 16-bit count phase gathers count information

for three permute phases. The �rst two of these permute phases use

5-bit radix and the third uses a 6-bit radix.

PLSBr PLSB radix sort using r-bit radix

EPLSBr EPLSB radix sort using r-bit local radix and 16-bit global radix

EBTr EBT radix sort using r-bit radix

QSort cache-tuned (memory tuned) Quicksort[LaMarca and Ladner 1999]

MSort cache-tuned (tiled) Mergesort [LaMarca and Ladner 1999]

7.1 Random Inputs

We �rst tested the algorithms on uniformly distributed random integers for n =
i � 106, i = 1; 2; 4; 8; 16; 32. We avoided using values of n near powers of 2, as
[Rahman and Raman 1999] suggests that LSB radix sort may perform slightly
poorly at these values of n.
Figure 2 shows the time per key for one permutation pass of LSB radix sort. We

see that using an r-bit radix, when 2r < T the running times remain constant and
when 2r � T the running times increase as TLB misses increase (at r = 4; 5; 6; 7; 8
there are very few cache conict misses). At r = 11 almost all accesses to the
destination array will cause TLB misses and the increase in running time at r = 16
is due to increasing cache conict misses.
Figure 3 shows the overall running times for LSB6, FLSB6 and LSB556. We see

that since the radix is small 6-tuple counting gives a faster running time than using
Friend's improvement. Since a permutation phase using a 5-bit radix has the same
running time as using a 4-bit radix and is faster than using a 6-bit radix, we see
that LSB556, which has in total four 5-bit and two 6-bit permute phases is faster
than LSB6 which has e�ectively �ve 6-bit and one 4-bit permute phases.
Figure 4 shows the overall running times for LSB radix sort. We found that

d32=re-tuple counting was faster than using Friend's improvement for radix sizes
r � 8 bits, so we give results using d32=re-tuple counting for r = 4; 5; 6; 7; 8 bits
and using Friend's improvement for r = 11; 16 bits. We see that LSB6 is the fastest
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Fig. 2. Time per key for one permute pass of LSB radix sort using radix 4; 5; 6; 7; 8; 11 and 16,
at n = 1M; 2M; 4M; 8M; 16M and 32M . Keys are random 32-bit unsigned integers and M=106

Timings(sec)

n LSB556 LSB6 FLSB6

1M 0.57 0.64 0.67

2M 1.12 1.28 1.36

4M 2.20 2.56 2.72

8M 4.35 5.09 5.44

16M 8.57 10.22 10.84

32M 17.52 20.45 21.85

Fig. 3. Overall running times for LSB556, LSB6 and FLSB6 on random 32-bit unsigned integers,
M=106.
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Timings(sec)

n LSB 4 LSB 5 LSB 6 LSB 7 LSB 8 FLSB 11 FLSB 16

1M 0.74 0.68 0.64 0.93 0.95 0.90 0.92

2M 1.49 1.36 1.28 1.85 1.98 1.86 1.94

4M 2.99 2.73 2.56 3.70 3.86 3.86 4.08

8M 6.26 5.57 5.09 7.38 7.67 7.68 7.90

16M 11.94 10.94 10.22 14.75 15.79 15.23 15.99

32M 24.06 21.96 20.45 29.62 30.50 31.71 33.49

Fig. 4. Overall running times for LSB radix sort with varying radix on random 32-bit unsigned
integers, M=106.

Timings(sec)

n EPLSB11 PLSB11 EBT11 LSB556 LSB6 FLSB11 QSort MSort

1M 0.46 0.47 0.54 0.57 0.64 0.90 0.70 1.02

2M 0.89 0.92 1.09 1.12 1.28 1.86 1.50 2.22

4M 1.74 1.82 2.20 2.20 2.56 3.86 3.24 4.47

8M 3.53 3.64 4.49 4.35 5.09 7.68 6.89 9.71

16M 7.48 7.85 8.81 8.57 10.22 15.23 14.65 19.47

32M 14.96 15.66 17.55 17.52 20.45 31.71 31.69 41.89

Fig. 5. Comparison of TLB-tuned radix sorts: EPLSB11, PLSB11, EBT11, LSB556 and LSB6
versus cache tuned LSB11, QSort and MSort on random 32-bit unsigned integers, M=106.

on random inputs as it has very few cache and TLB misses. LSB7 has one less
pass and about the same number of cache misses but almost half the accesses to
the destination array cause TLB misses, so we see that it is almost 45% slower.
LSB5 has very few cache and TLB misses but has one more pass than LSB6 and
is slightly slower, however we will see later it is robust against worst-case inputs
whereas LSB6 is not.
Figure 5 shows the overall running times for the TLB optimised radix sorting

algorithms, EPLSB11, PLSB11, EBT11, LSB556 and LSB6 and the cache optimised
algorithms LSB11, QSort and MSort. We see that EPLSB and PLSB radix sort
outperform all the radix sort variants, getting speedups of 14+% and 10+% over
the other TLB-optimised algorithms. These two algorithms obtain speedups of
52+% and 50+% over the cache optimised QSort, MSort and LSB11, for large n.

7.2 Testing robustness

We also tested the algorithms on the following input sequences:

|0; : : : ; n� 1

|0; : : : ; T � 1 repeated n=T times

with n = 220; 221; 222; 223; 224; 225, and where appropriate s = BC=2 = PT=2. We
compared the running times for one pass of the algorithms LSB5, LSB6, EPLSB10,
EPLSB11, PLSB11 and EBT11 with uniformly distributed random keys against
the input sequences above. Since these experiments were for just one pass, the
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Fig. 6. Time per key for one pass of normal LSB with 5-bit radix, on random keys (random),
on keys 0; : : : ; 2n � 1 (0,...n-1) and on repeated key sequence 0; : : : ; T � 1 (0,..,T-1 repeated) at
n = 220; 221; 222; 223; 224 and 225

algorithms were modi�ed to gather counts for the �rst pass only, so one should not
use these results to extrapolate the overall running times.
As stated in Proposition 3 the sequence 0; : : : ; n�1 should cause worst-case cache

misses at these values of n in LSB radix sort and one can easily show that it should
also causes worst-case TLB when the radix r � log T .
With these values of n and where appropriate s, the repeated sequence 0; : : : ; T�1

should cause worst-case cache misses in LSB radix sort and EPLSB radix sort. This
sequence should also cause worst-case TLB miss in LSB radix sort if radix r � logT
and in EPLSB radix sort if the di�erence between the global and local radix lengths
is at-least logT .
Figures 6, 7, 8, 9, 10 and 11 summerise the results we obtained. We see in

Figures 6 that in LSB5, where worst-case TLB misses are not in e�ect, there is
only a slight, 3%, increase in running time with the above inputs versus the random
keys. Similarly we see in Figure 11 with the repeated sequence 0; : : : ; T � 1 there is
only a slight, 7%, increase in the running time of EPLSB11, where again worst-case
TLB misses are not in e�ect. This is almost certainly due to the fact that the
cache is physically mapped so we can not ensure that physical pages allocated to
classes map to particular cache blocks. So we note that when 2r is small we do not
observe any signi�cant increase in running time due to cache conict misses even
with worst-case inputs, this is in contrast to the results in Figure 2 when 2r is large
the increase in running times between radix 11 and radix 16 is almost entirely due
to an increase in cache conict misses.
We see in Figure 7 that in LSB6, where worst-case TLB misses are in e�ect, one

pass with the above inputs takes almost 2.5 times as long as on the random keys.
Similarly we see in Figure 10 that in EPLSB10 one pass with the repeated sequence
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Fig. 7. Time per key for one pass of normal LSB with 6-bit radix, on random keys (random),
on keys 0; : : : ; 2n � 1 (0,...n-1) and on repeated key sequence 0; : : : ; T � 1 (0,..,T-1 repeated) at
n = 220; 221; 222; 223; 224 and 225
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Fig. 8. Time per key for one pass of explict block transfer (EBT) with 11-bit radix, on random
keys (random), on keys 0; : : : ; 2n � 1 (0,...n-1) and on repeated key sequence 0; : : : ; T � 1 (0,..,T-1
repeated) at n = 220; 221; 222; 223; 224 and 225
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Fig. 9. Time per key for one pass of PLSB with 11-bit radix, on random keys (random), on
keys 0; : : : ; 2n � 1 (0,...n-1) and on repeated key sequence 0; : : : ; T � 1 (0,..,T-1 repeated) at
n = 220; 221; 222; 223; 224 and 225
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Fig. 10. Time per key for one pass of EPLSB with a 16-bit global key and 10-bit local key on
random keys (random), on keys 0; : : : ; 2n � 1 (0,...n-1) and on repeated key sequence 0; : : : ; T � 1
(0,..,T-1 repeated) at n = 220; 221; 222; 223; 224 and 225
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Fig. 11. Time per key for one pass of EPLSB with a 16-bit global key and 11-bit local key on
random keys (random), on keys 0; : : : ; 2n � 1 (0,...n-1) and on repeated key sequence 0; : : : ; T � 1
(0,..,T-1 repeated) at n = 220; 221; 222; 223; 224 and 225

0; : : : ; T � 1 takes almost twice as long as with the random keys, again worst-case
TLB misses are in e�ect.
These results validate our design decision to tune EPLSB to prevent worst-case

TLB behaviour but allow theoretically worst-case cache behaviour.
In theory PLSB should not have a worst-case behaviour, and we see in Figure 9

that the running time hardly changes with the above inputs versus random keys.

7.3 Sorted keys

We also tested the algorithms on sorted uniformly distributed random keys. We
found that all the algorithms are faster or no slower with this input than with
random keys and this is because they all gain from accessing successive locations
in the count and destination arrays.

8. PERMUTING AN ARRAY

We consider the problem of permuting n integers from a source array to a destina-
tion array as speci�ed in an additional permutation array. The naive implementa-
tion sequentially visits each element of the source and permutation array and places
the value from the source array to some random location in the destination array as
speci�ed by the permutation array. If the permutation is random and if n=P � T
virtually every access to the destination array will cause a TLB miss and similarly
if n=B � C virtually every access to the destination array will cause a cache miss.
We have tested two approaches to permuting, both of which work in a `most-

sign�cant-bit �rst' fashion. Let k divide n for convenience, and de�ne k equal-sized
areas D1; : : : ; Dk in the destination array. All keys whose �nal destinations are in
Di are moved to some location in Di in the �rst instance. We then recursively
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Timings(sec)

n 1M 2M 4M 8M 16M

Naive 0.30 0.66 1.40 2.89 6.03

PS 0.35 0.70 1.40 2.85 5.77

EBT 0.25 0.53 1.13 2.32 4.74

Fig. 12. Running times for naive, pre-sorting (PS) and explicit block copy (EBT) permutation
algorithms for permuting 32-bit integer items. The permutations were random. M=220.

permute keys within Di for i = 1; : : : ; k. The di�erences are in how the keys are
moved to locations in Di. One major disadvantage of both these approaches is that
when we move an item to an intermediate location, we must move then the �nal
destination of the item along with the item. This doubles the data to be moved.
The improvements therefore are not as pronounced.
In each case we choose k to be minfC=4; 4n=(CB)g, and distribute the keys into

k areas. If the input size is small enough, then each Di �ts comfortably into cache
and we �nish the problem o� with the naive algorithm, otherwise we recurse.
In each case, the distribution is similar to sorting the items according to the most

signi�cant log k bits of the destination address. In one case, we do this by moving
items to an intermediate bu�er as in the explicit block copy algorithm, and in the
other, we do it by locally pre-sorting the items in segments according to which area
they need to be moved to, and then moving them all in one global permute step.
We omit the TLB and cache analyses of these algorithms, which are essentially the
same as those of LSB radix sort variants, and merely give the experimental results,
which show that the explicit block copying algorithm performs quite well in this
context (see Fig 12).

9. CONCLUSIONS AND FUTURE WORK

We have shown the importance of minimising TLB misses in algorithms, even
though it may require signi�cantly more operations. We have shown the general
technique of explict block transfer [Sen and Chatterjee 2000] minimises TLB misses
and have applied it to radix sorting. We have also given two other techniques for
reducing TLB misses in radix sorting, reducing working set size and pre-sorting.
We have given three radix sorting algorithms, pre-sorting LSB radix sort (PLSB

radix sort), explicit block transfer LSB radix sort (EBT radix sort) and extended-
radix PLSB radix sort (EPLSB radix sort), of which the �rst two have provably
few cache and TLB misses, the last has provably few TLB misses.
The EBT technique is general, however, it does not always give the best practi-

cal performance. PLSB gives a fast running time and is robust. EPLSB has the
advantage that it has fewer data moves than PLSB and EBT. Our current imple-
mentation of EPLSB can in theory su�er worst-case cache misses, even though this
is not observed in experimental results, since it does not randomise the start of
destination pointers during the global permute as this would add too much of an
over-head. However since the number of random locations accessed is T � C it
would be interesting to determine if the algorithm can be made robust by using
less randomisation than suggested by [Mehlhorn and Sanders 2000].
We have shown the pre-sorting and explict block transfer techniques applied
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fruitfully to related problems such as permutations, but here more work could be
done, including for instance work on specialised classes of permutations. Also the
e�ect of applying pre-sorting and explicit block transfer to other algorithms such
as MSB radix sort should be studied.
On a more speculative note, since pre-sorting and explict block transfer allow

data to be moved in blocks we could further exploit the features available on most
modern machine architectures, such as blocked copy operations between main mem-
ory addresses which by-pass the cache. Also since the local sorts in PLSB radix sort
can be performed independently, on a machine with large instruction-level paral-
lelism we could hope to speed that phase up by performing two or more local sorts
simultaneously (by fusing the loops, for example).
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