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linear algorithm. Although I have not been teaching 
a data structures course for two years, it would be 
worthwhile to share some sample solutions and 
comparison results in my file with other educators. 
As a result, in addition to the sediment sort, five 
other linked list sorting algorithms are selected for a 
comparative study. They are bubble sort, selection 
sort, merge sort, quick sort, and tree sort. All of 
them take a linked list as input. 

1 Introduction 
Carraway recently published an article [2] describing 
a sorting algorithm (the sediment sort) for doubly 
linked lists. He claimed that the sediment sort is 
one of the fastest and most efficient sorts for linked 
list, and planned to determine its complexity. In this 
article, a comparative study will be presented to 
show that the sediment sort is only a minor 
variation of the bubble sort which has been known to 
the computer science community for more than three 
decades and that the sediment sort is perhaps the 
slowest algorithm for sorting linked lists. 

In my data structures class I taught two years ago, 
students were required to compare various sorting 
algorithms for arrays of different size. It was 
followed by a study of fine tuning the quick sort by 
removing recursion, using median-of-three, and 
sorting small files with other algorithms. Students 
were asked to run their programs with different small 
file sizes and to choose an optimal one. They also 
ran the same program under different hardware (PCs 
and SPARCstations) with different compilers 
(Borland C++, Turbo C++, Microsoft C, and GCC). 
Different configuration yields different optimal size. 
Students were excited about this approach because 

they believed they learn something "practical" rather 
than a theoretical treatment of different algorithms. 

Students were also encouraged to compare linked list 
sorting algorithms with tree-based ones (binary 
search trees, AVL trees, and B-trees). Usually, 
bucket sort was chosen as a benchmark since it is a 
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In the following, Section 2 reviews the similarity 
between the sediment sort and the traditional bubble 
sort. Section 3 gives a description of tree sort, which 
uses a doubly linked list implementation, while 
Section 4 presents the other four singly linked list 
sorting algorithms. Section 5 provides a comparison 
and finally Section 6 has our conclusion. 

2 Sediment Sort 
The sediment sort uses a bounding variable 
n e w _ t a i l ,  which is set when a pair of nodes are 
swapped, to limit the range for next scan. This 
algorithm was known to the computer community 
much earlier and was discussed in Knuth's 
monumental work (Knuth [4]). Figure 1 is a direct 
translation from Knuth's description, where SWAP ( ) 
is a macro that swaps two integers a [ i ]  and 
a [ i+  1 ] .  Notice the striking similarity between this 
one and the sediment sort. 

void BUBBLEsort(int a[], int n) 
{ 

int bound = n-l, done = 0; 
int swapped, i ; 

do { 
swapped = -i; 
for (i = 0; i < bound; i++) 

if (a[i] > a[i+l]) { 
SWAP(a[i], a[i+l]) ; 
swapped = i; 

) 
if (swapped < 0) 

done = i; 
else 

bound = swapped; 
} while (!done) ; 

} 

Figure h Bubble Sort  
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The complexity of this algorithm is O(ng. The worst 
case happens when the given array is reversely sorted 
and in this case exactly n(n-1)/2 comparisons and 
swaps are required. The "best" case, however, only 
requires n-1 comparisons and no swap when the 
array is already sorted. Note that theoretically bubble 
sort is one of the several O(n9 algorithms, the others 
being the insertion sort and selection sort. However, 
since worst-case study does not usually provide the 
average behavior of an algorithm, a comparative 
study remains to be done. 

3 Doubly Linked List Sorting Algorithms 
Two doubly linked list sorting algorithms are 
included in this study, the sediment sort and the tree 
sort. There is no need to repeat the sediment sort 
here and the interested reader should refer to [2] for 
the details. 

Since a node in a doubly linked list has two fields, 
prey and next, pointing to the previous node and 
the next node, it is good enough for representing a 
binary tree. Therefore, we can use these fields to 
build a binary search tree and reconstruct a sorted 
doubly linked list as the binary search tree is 
traversed with inorder. Since building a binary 
search tree is quite popular, the following only 
describes the reconstruction phase. 

static NodePTR head, tail; 

void Traverse(NodePTR root) 
{ 

NodePTR work; 

if (root != NULL) { 
Traverse(root->LEFT) ; 
work = foot->RIGHT; 
APPENDNODE(root); 
Traverse(work); 

Figure  2: Recons t ruc t  a List f rom a Tree 

Figure 2 shows a modified recursive inorder traversal 
of a binary search tree. Two static variables, h e a d  
and t a i l ,  are set to NULL before calling 
T r a v e r s e  ( ) . Function T r a v e r s e  ( ) receives the 
current root pointer. If it is not NULL, the left 
subtree is traversed. Then, the pointer to r o o t ' s  
right subtree is saved to work ,  the root is appended 

to the end of the doubly linked list with head and tail 
pointers h e a d  and t a i l ,  and finally the right 
subtree pointed to by w o r k  is traversed. Note that 
the pointer to the right subtree must be saved before 
the root is appended to the doubly linked list since 
appending will destroy p r e v  and n e x t .  

As is well-known, the complexity of binary search 
tree insertion is O(n2), since in a binary search tree, 
except for one leaf, all nodes could have exactly one 
child and in this case the tree reduces to a linked list. 
However, if the input data are random, the resulting 
binary search tree could be reasonably balanced and 
the complexity would be approximately O(nlog2n). 

4 Singly Linked List Sorting Algorithms 
Since a singly linked list has only one link field, any 
sorting algorithm for a singly linked list can only 
scan the list along one direction. Thus, the selection 
sort, insertion sort and bubble sort can easily be 
tuned into a list sorting algorithm. Although Shell 
sort can also be made into a list sorting algorithm, it 
could be inefficient since we have to step through 
nodes in order to find a neighboring node if the gap 
is greater than one. 

An efficient implementation of heap sort requires an 
array that is accessed almost randomly (i.e., 
accessing the index sequence i,//2, //2 2, and so on). 
Although it could be done with other heap data 
structures (see, for example, Weiss [8]), the material 
might be inappropriate for a CS2 type course. 

For quick sort, Hoare's original algorithm [3] cannot 
be used since this algorithm "bums a candle from 
both ends". Nico Lomuto's algorithm as described 
in Bentley [1] could be a better candidate for our 
study since it keeps two forward scanning pointers. 
However, since quick sort is not stable (Sedgewick 
[6]), it is not included. Instead, an algorithm which 
was originally designed to make quick sort stable 
and to handle equal keys is selected for this study. 
This algorithm was first proposed by Motzkin [5] 
and then analyzed by Wegner [7]. In fact, Wegner 
showed that on average this algorithm is of order 
O((m+n)log2(n/m)); where n is the number of keys in 
an input linked list in which each key occurs m 
times. 
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The idea of Wegner's algorithm is simple. Three 
linked lists are used, less, equal and la rger .  
The first node of the input list is chosen to be a 
pivot and is moved to e q u a l .  The value of each 
node is compared with the pivot and moved to l e s s  
(resp., e q u a l  or l a r g e r )  if the node's value is 
smaller than (resp., equal to or larger than) the pivot. 
Then, l ess  and l a rge r  a r e  sorted recursively. 
Finally, joining l e s s ,  e q u a l  and l a r g e r  into a 
single list yields a sorted one. Figure 3 shows the 
basic concept, where APPEND( ) appends the first 
argument to the tail of a singly linked list whose 
head and tail are defined by the second and third 
arguments. On return, the first argument will be 
modified so that it points to the next node of the list. 
J O I N ( )  appends the list whose head and tail are 
defined by the third and fourth arguments to the list 
whose head and tail are defined by the first and 
second arguments. For simplicity, the first and 
fourth arguments become the head and tail of the 
resulting list. 

void Qsort(NodePTR *first, NodePTR *last) 
{ 

NodePTR iesHEAD=NULL, iesTAIL=NULL; 
NodePTR equHEAD=NULL, equTAIL=NULL; 
NodePTR iarHEAD=NULL, IarTAIL=NULL; 
NodePTR current = *first; 
int pivot, info; 

if (current =: NULL) 
return; 

pivot = current->data; 
APPEND(current, equHEAD, equTAIL) ; 
while (current != NULL) { 

info = current->data; 
if (info < pivot) 

APPEND(current,lesHEAD, iesTAIL) 
else if (info > pivot) 

APPEND(current,larHEAD,iarTAIL) 
else 

APPEND(current,equHEAD,equTAIL); 
) 

Qsort(&iesHEAD, &iesTAIL); 
Qsort(&larHEAD, &iarTAIL); 
JOIN(iesHEAD, iesTAIL,equHEAD, equTAIL); 
JOIN(iesHEAD,equTAIL,iarHEAD, iarTAIL); 
*first = iesHEAD; 
*last = iarTAIL; 

Figure 3: Quick Sort 

At a first glance, merge sort may not be a good 
candidate since the middle node is required to 
subdivide the given list into two sublists of equal 
length. Fortunately, moving the nodes alternatively 

to two lists would also solve this problem 
(Sedgewick [6]). Then, sorting these two lists 
recursively and merging the results into a single list 
will sort the given one. Figure 4 depicts the basic 
idea of this merge sort. 

NodePTR Msort(NodePTR first) 
{ 

NodePTR iistlHEAD = NULL; 
NodePTR iistlTAIL = NULL; 
NodePTR iist2HEAD = NULL; 
NodePTR list2TAIL = NULL; 

if (first==NULL [ [ first->next==NULL) 
return first; 

while (first != NULL) { 
APPEND(first,listlHEAD, IistlTAIL); 
if (first != NULL) 

APPEND(first iist2HEAD,iist2TAIL); 
) 
iistlHEAD = Msort iistlHEAD); 
Iist2HEAD = Msort Iist2HEAD); 
return merge(listlHEAD, iist2HEAD); 

Figure 4: Merge Sort 

Moreover, almost all external sorting algorithms can 
be used for sorting linked lists since each involved 
file can be considered as a linked list that can only 
be accessed sequentially. Note that one can sort a 
doubly linked list using its next fields as if it is a 
singly linked one and reconstruct the p r e v  fields 
after sorting with an additional scan. 

5 Comparisons 
Of these six algorithms, two (sediment sort and tree 
sort) use a doubly linked list while the other four 
(bubble sort, selection sort, quick sort and merge 
sort) use a singly linked list. Due to the similarity 
between sediment sort and bubble sort, one can 
immediately conclude that the latter is faster since 
fewer pointer manipulations are involved. 
Furthermore, the selection sort should be faster than 
the bubble sort since the former requires only n-1 
swaps while the latter may require as many as n(n- 
1)/2. Thus, for these three algorithms, the issue is 
not which one is faster than the other, but to 
determine the relative efficiency. 

All of these six algorithms were coded in ANSI C 
and SWAP(),  APPEND() and J O I N ( )  are C 
macros rather than functions except for the sediment 
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sort whose swap function is taken directly from 
Carraway's paper. 2 For those who love C++, these 
macros and variable parameters can easily be 
changed to ± n l ± n e  functions and aliases, 
respectively. Each sorting algorithm is repeated 
several times sorting the same set of input to 
minimize timing error and the average elapsed time 
is recorded. The c l o c k ( )  function is used to 
retrieve the elapsed time between the start and the 
end of a sorting algorithm, excluding data generation 
and all other operations. Note that c l o c k (  ) returns 
the number of clock ticks rather than the number of 
seconds. Moreover, since c l o c k ( )  returns elapsed 
time rather than user time (i.e., the CPU time used 
by a user program), this test is performed under MS- 
DOS rather than Windows and Unix to minimize 
the multitasking effect. The machine used for this 
test is an Intel 66mhz 486DX2 IBM PC compatible 
and the compiler is Watcom C/C++ Version 10.0 
with compiler options set to / o n e a t x / z p 4  / 4 / f p3  
as suggested by Watcom for maximum efficiency. 

Table 1: Running Time for n = 100 to 1000 

which is a doubly linked list implementation of 
bubble sort, is about 1.5 times slower than the 
bubble sort. Its cause could be some extra time for 
maintaining two link fields. The function 
implementation of swapping might consume some 
processing time as well. Swapping is implemented 
with C macros in all other algorithms. 

Table  2: Running Time for n = 2000 to 10000 

] O(nZ) Group I O(nlog2n) Group ] 

n D-Bub S-Bub Select Msort Qsort Tree 

2000 159 127 93 2.75 2.00 1.38 

3000 379 302 220 3.38 3.38 2.88 

4000 693 549 401 5.50 4.12 4.12 

5000 1104 867 643 6.00 6.88 5.50 

6000 1763 1395 1082 9.00 8.88 6.38 

7000 3037 2604 2169 1 2 . 3 8  11.00 9.62 

8000 4449 3850 '3252 1 3 . 7 5  11.62 10.25 

9000 5515 4630 3917 1 6 . 3 8  14,38 12,25 

10000 6591 , - " 5 5 0 9  4619 1 9 . 2 5  16.50 12.25 

O(n 2) Group O(nlog2n) Group 

n D-Bubl S-Bubl Select Msort Qsort Tree 

100 0.22 0.12 0.10 0.08 0.07 0.05 

200 0.98 0.54 0.44 0.15 0.13 0,10 

300 2.20 i.22: 0.76 0.23 0.22 0.19 

400 4.18 2.42 1.44 0.32 0.30 0.21 

500 6.38 3.741 2.18 0.42 037 029 

600 10.22 6.48 4.06 0.53 0.51 0.40 

700 15.38 10.10 6.46 0.69 0.57 0.43 

800 21.20 14.82 9.68 0.76 0.69 0.51 

900 28.34 20.20 13.62 0.88 i 0.79 0.61 
I 

1000 36.58 26.14 ...... 17.88 1.01l 0.89 0.69 

Since some algorithms perform better for small size 
input but poorly for large ones, timing will be 
divided into two groups. Table 1 and Table 2 
contain the number of clock ticks used for all six 
algorithms. These two tables show that the fastest 
algorithm is the tree sort and the slowest is the 
sediment sort. Merge sort, quick sort and tree sort 
have very similar timing results. Sediment sort, 

2 All test programs are available on request. Please send an e-mail to the 
author. 
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Note that comparing timing values of two algorithms 
for a particular n usually does not provide much 
insight. This is particularly true if two algorithms 
from different groups are compared. For example, 
the sediment sort is about four times slower than the 
tree sort when n = 100 and it becomes 538 times 
slower when n = 10000. By the definition of O0, 
the number of data items n and the required clock 
ticks t to sort them satisfy t=ot(n 2) and t=ct(nlog~n) 
for the O(n 2) group and the O(nlog~n) group, 
respectively. A least square (regression) fit, taking 
n and t as input, will deliver an estimation of the 
constant factor it. 3 Table 3 shows this result. The 
third column is the ratio of the second and the first 
columns. Note that n is divided by 100 to make the 
value ct larger. So, the equations are t=offk 2) and 
t=o~(klog2k), where k=n/100. 

Now we can compare these constant factors to 
determine their relative efficiency. For the O(n 2) 
group, if n _< 1000, the sediment sort is 1.43 = 
0.342743 / 0.239701 (resp., 2.14 = 0.342743 / 

3 We do not have to write a program to carry out the least square fitting 
since m,gst commercial spreadsheet packages such as Lotus 1-2-3, Excel 
and Quatro Pro have this capability built-in. 
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0.160253) times slower than the bubble (resp., 
selection) sort, while the bubble sort is 1.50 = 
0.239701 / 0.160253 times slower than the selection 
sort. If n > 1000, the sediment sort is 1.19 = 
0.649589 / 0.546267 (resp., 1.42 = 0.649589 / 
0.456876) times slower than the bubble (resp., 
selection) sort, while the bubble sort is 1.19 = 
0.546267 / 0.456876 times slower than the selection 
sort. Thus, for larger size input, the speed gap is 
narrower than smaller size input. 

Table 3: The Constant Factors 

Method ~ 1000 > 1000 Ratio 

D.Bub 0,342743 0.649589 1.895 

S-Bub 0.239701 0,546267 2.279 

Select 0.160253 0.456876 2.851 

Mso. 0.032090 0.027577 0.859 

Qsort 0.028548 0.024358 0,853 

Tree 0.021951 0.019862 0.905 

For the O(nlog2n) group, if n <_ 1000, the merge sort 
is 1.12 = 0.032090 / 0.028548 (resp,, 1.46 = 
0.032090 / 0.021951) times slower than the quick 
sort (resp., tree sort), while the quick sort is 1.30 = 
0.028548 / 0.021951 times slower than the tree sort. 
If n > 1000, the merge sort is 1.13 = 0.027577 / 
0.024358 (resp., 1.39 = 0.027577 / 0.019862) times 
slower than the quick sort (resp., tree sort), while the 
quick sort is 1.22 = 0.024358 / 0.019862 times 
slower than the tree sort. The speed difference is 
very similar to that of the O(n 2) group. 

Consider the ratios. Since a larger constant means 
less efficient, a ratio that is larger than (resp., smaller 
than) one means the corresponding algorithm is more 
efficient (resp., less efficient) in handling small input 
size. Thus, the O(n ~) group algorithms have better 
performance in handling small data set, and the 
O(nlog~n) group algorithms are more efficient in 
handling larger data set, although the difference is 
not as significant as that of the O(n ~) group. 
Whatever the input size, the O(nlog:n) group 
performs much better than the O(n 2) group. Note 
that this only shows the test results for n >_ 100, it 
could be different for n < 100. 

6 Conclus ion 
The six algorithms included in this test are only a 
small sample of sorting algorithms. There are other 
interesting algorithms that are worth to be mentioned. 
For example, the shaker sort is an extension to the 
bubble sort in which two bounds are used to limit 
the range for next scan (Knuth [4] and Wirth [9]). 
Since the shaker sort scans the list in both 
directions, it would be very interesting to know the 
contribution of using two bounds rather than one in 
the bubble sort and the sediment sort. 

Two factors are not addressed in this article. Since 
the input data for this test are random, some extreme 
characteristics cannot be tested. For example, the 
tree sort and the quick sort perform poorly if the 
input is sorted or reversely sorted, while bubble sort 
requires only n-1 comparisons and no swap if the 
input is sorted. Therefore, a comparison could be 
based on the sortedness of the input data. Second, in 
practice input data might not be distinct. Yet another 
comparison could be based on the level of data 
uniqueness. If there are duplicated items in the 
input, some algorithms could perform better than the 
others. For example, the quick sort presented in this 
paper has the capability of collecting equal items into 
a list so that they will not involve in subsequent 
sorting phases, while others (i.e., merge sort) are 
insensitive to the presence of duplicated data. 

Please note that performing these comparison tests is 
not new and has been carried out many times based 
on different criteria by many researchers ever since 
people knew sorting is an important and useful 
technique (see Knuth [4] for historical notes). 
However, as an educator, I believe that making these 
theoretical results down to the earth and accessible 
for students would be an important teaching 
consideration. 

References 
1. Jon Bentley, Programming Pearls, Addison- 

Wesley, 1986. 
2. Jim Carraway, Doubly-Linked Opportunities, 

ACM SIG3C 3C ONLINE, Vol. 3 (1996), No. 1 
(January), pp. 9-12. 

3. R. Hoare, Quicksort, The Computer Journal, 
Vol. 5 (1962), pp. 10-15. 

Page 8 3C ONLINE Volume 3, Number 2 April 1996 



4. Donald E. Knuth, The Art of  Computer 
Programming. Volume 3: Sorting and Searching, 
second printing, Addison-Wesley, 1975. 

5. Dalia Motzkin, A Stable Quicksort, 
Software-Practice and Experience, Vol. 11 
(1981), No. 6, pp. 607-611. 

6. Robert Sedgewick, Algorithms in C++, 
Addison-Wesley, 1992. 

7. Lutz M. Wegner, Sorting a Linked List with 
Equal Keys, Information Processing Letters, Vol. 
15 (1982), No. 5 (December), pp. 205-208. 

8. Mark Allen Weiss, Data Structures and 
A l g o r i t h m  A n a l y s i s  i n  C + + ,  
Benjamin/Cummings, 1994. 

9. Niklaus Wirth, Algorithms & Data Structures, 
Prentice-Hall, 1986. 

Response from Jim Carraway, author of Doubly- 
Linked Opportunities, 3C ONLINE, January 1996: 

My purpose in writing the article was to provide a 
quick reference (with code, diagrams, and an 
example) for  instructors whose students ask about 
sorting data in the structure of  a doubly-linked list. 
My students' query was directed to this problem, not 
how to sort data with linked lists. I do appreciate, 
though, Shene choosing my article for the basis of  
his scientific and scholarly approach to this topic. 
(Besides, it is always nice to see your name in print.) 

When I stated, "The Sediment Sort is one of  the 
fastest and most efficient sorts for linked lists. ", 1 
thought it would be interpreted in the context of  the 
article. Additionally, when I chose to call my 
masterpiece the "Sediment Sort", I thought the play 
on "Bubble Sort" would be obvious. I chose not to 
call it the "Carraway Sort" because I did not want 
my name inexorably linked with it in the annals of  
computer science. 

I wholeheartedly agree with Shene's last paragraph. 
Does the expression, "If a study is not worth doing 
at all, it is not worth doing well" mean anything to 
you ? 
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Abstract 
An integral part of the AAS degree in Computer 
Information Systems (CIS) is a course entitled 
Systems Analysis and Design. At Finger Lakes 
Community College, we have had great success with 
implementing a student team project approach to the 
course. The approach has been very effective in that 
it allows us to augment and reinforce an extensive 
amount of comprehensive material learned in the 
standard lecture and textbook. The approach also 
promotes team dynamics and group problem-solving 
skills that are desperately needed by the CIS graduate 
in the workplace. This paper discusses the 
advantages to student learning via the team approach 
in a Systems Analysis and Design course. The 
approach, logistics, activities, and benefits will be 
addressed. 

Introduction 
The Systems Analysis and Design course is required 
as part of the CIS degree program and is intended to 
be taken in the student's last semester. There are 
two reasons for this. First, they must use skills and 
knowledge acquired from previous courses, such as 
programming and program design. They should also 
have knowledge of business communications and 
have the ability to use one software desktop 
publishing tool. Second, the topics taught in the 
course are needed in the workplace by many of our 
graduates. Many of our AAS graduates are finding 
jobs as computer software developers and computer 
support personnel, so they must have an 
understanding of the key steps in the systems 
development life cycle. 

A team approach to problem solving in this course 
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