
ISSUES AND SOLUTIONS

A COMPARATIVE STUDY OF LINKED
LIST SORTING ALGORITHMS

by Ching-Kuang Shene t
Michigan Technological Universi ty
Depar tment of Computer Science

Houghton, MI 49931-1295

shene@mtu.edu

linear algorithm. Although I have not been teaching
a data structures course for two years, it would be
worthwhile to share some sample solutions and
comparison results in my file with other educators.
As a result, in addition to the sediment sort, five
other linked list sorting algorithms are selected for a
comparative study. They are bubble sort, selection
sort, merge sort, quick sort, and tree sort. All of
them take a linked list as input.

1 Introduction
Carraway recently published an article [2] describing
a sorting algorithm (the sediment sort) for doubly
linked lists. He claimed that the sediment sort is
one of the fastest and most efficient sorts for linked
list, and planned to determine its complexity. In this
article, a comparative study will be presented to
show that the sediment sort is only a minor
variation of the bubble sort which has been known to
the computer science community for more than three
decades and that the sediment sort is perhaps the
slowest algorithm for sorting linked lists.

In my data structures class I taught two years ago,
students were required to compare various sorting
algorithms for arrays of different size. It was
followed by a study of fine tuning the quick sort by
removing recursion, using median-of-three, and
sorting small files with other algorithms. Students
were asked to run their programs with different small
file sizes and to choose an optimal one. They also
ran the same program under different hardware (PCs
and SPARCstations) with different compilers
(Borland C++, Turbo C++, Microsoft C, and GCC).
Different configuration yields different optimal size.
Students were excited about this approach because

they believed they learn something "practical" rather
than a theoretical treatment of different algorithms.

Students were also encouraged to compare linked list
sorting algorithms with tree-based ones (binary
search trees, AVL trees, and B-trees). Usually,
bucket sort was chosen as a benchmark since it is a

This work was supported in part by a NSF grant CCR-9410707.

In the following, Section 2 reviews the similarity
between the sediment sort and the traditional bubble
sort. Section 3 gives a description of tree sort, which
uses a doubly linked list implementation, while
Section 4 presents the other four singly linked list
sorting algorithms. Section 5 provides a comparison
and finally Section 6 has our conclusion.

2 Sediment Sort
The sediment sort uses a bounding variable
n e w _ t a i l , which is set when a pair of nodes are
swapped, to limit the range for next scan. This
algorithm was known to the computer community
much earlier and was discussed in Knuth's
monumental work (Knuth [4]). Figure 1 is a direct
translation from Knuth's description, where SWAP ()
is a macro that swaps two integers a [i] and
a [i+ 1] . Notice the striking similarity between this
one and the sediment sort.

void BUBBLEsort(int a[], int n)
{

int bound = n-l, done = 0;
int swapped, i ;

do {
swapped = -i;
for (i = 0; i < bound; i++)

if (a[i] > a[i+l]) {
SWAP(a[i], a[i+l]) ;
swapped = i;

)
if (swapped < 0)

done = i;
else

bound = swapped;
} while (!done) ;

}

Figure h Bubble Sort

Page 4 3C ONLINE Volume 3, Number 2 April 1996

The complexity of this algorithm is O(ng. The worst
case happens when the given array is reversely sorted
and in this case exactly n(n-1)/2 comparisons and
swaps are required. The "best" case, however, only
requires n-1 comparisons and no swap when the
array is already sorted. Note that theoretically bubble
sort is one of the several O(n9 algorithms, the others
being the insertion sort and selection sort. However,
since worst-case study does not usually provide the
average behavior of an algorithm, a comparative
study remains to be done.

3 Doubly Linked List Sorting Algorithms
Two doubly linked list sorting algorithms are
included in this study, the sediment sort and the tree
sort. There is no need to repeat the sediment sort
here and the interested reader should refer to [2] for
the details.

Since a node in a doubly linked list has two fields,
prey and next, pointing to the previous node and
the next node, it is good enough for representing a
binary tree. Therefore, we can use these fields to
build a binary search tree and reconstruct a sorted
doubly linked list as the binary search tree is
traversed with inorder. Since building a binary
search tree is quite popular, the following only
describes the reconstruction phase.

static NodePTR head, tail;

void Traverse(NodePTR root)
{

NodePTR work;

if (root != NULL) {
Traverse(root->LEFT) ;
work = foot->RIGHT;
APPENDNODE(root);
Traverse(work);

Figure 2: Recons t ruc t a List f rom a Tree

Figure 2 shows a modified recursive inorder traversal
of a binary search tree. Two static variables, h e a d
and t a i l , are set to NULL before calling
T r a v e r s e () . Function T r a v e r s e () receives the
current root pointer. If it is not NULL, the left
subtree is traversed. Then, the pointer to r o o t ' s
right subtree is saved to work , the root is appended

to the end of the doubly linked list with head and tail
pointers h e a d and t a i l , and finally the right
subtree pointed to by w o r k is traversed. Note that
the pointer to the right subtree must be saved before
the root is appended to the doubly linked list since
appending will destroy p r e v and n e x t .

As is well-known, the complexity of binary search
tree insertion is O(n2), since in a binary search tree,
except for one leaf, all nodes could have exactly one
child and in this case the tree reduces to a linked list.
However, if the input data are random, the resulting
binary search tree could be reasonably balanced and
the complexity would be approximately O(nlog2n).

4 Singly Linked List Sorting Algorithms
Since a singly linked list has only one link field, any
sorting algorithm for a singly linked list can only
scan the list along one direction. Thus, the selection
sort, insertion sort and bubble sort can easily be
tuned into a list sorting algorithm. Although Shell
sort can also be made into a list sorting algorithm, it
could be inefficient since we have to step through
nodes in order to find a neighboring node if the gap
is greater than one.

An efficient implementation of heap sort requires an
array that is accessed almost randomly (i.e.,
accessing the index sequence i,//2, //2 2, and so on).
Although it could be done with other heap data
structures (see, for example, Weiss [8]), the material
might be inappropriate for a CS2 type course.

For quick sort, Hoare's original algorithm [3] cannot
be used since this algorithm "bums a candle from
both ends". Nico Lomuto's algorithm as described
in Bentley [1] could be a better candidate for our
study since it keeps two forward scanning pointers.
However, since quick sort is not stable (Sedgewick
[6]), it is not included. Instead, an algorithm which
was originally designed to make quick sort stable
and to handle equal keys is selected for this study.
This algorithm was first proposed by Motzkin [5]
and then analyzed by Wegner [7]. In fact, Wegner
showed that on average this algorithm is of order
O((m+n)log2(n/m)); where n is the number of keys in
an input linked list in which each key occurs m
times.

3C ONLINE Volume 3, Number 2 April 1996 Page 5

The idea of Wegner's algorithm is simple. Three
linked lists are used, less, equal and la rger .
The first node of the input list is chosen to be a
pivot and is moved to e q u a l . The value of each
node is compared with the pivot and moved to l e s s
(resp., e q u a l or l a r g e r) if the node's value is
smaller than (resp., equal to or larger than) the pivot.
Then, l ess and l a rge r a r e sorted recursively.
Finally, joining l e s s , e q u a l and l a r g e r into a
single list yields a sorted one. Figure 3 shows the
basic concept, where APPEND() appends the first
argument to the tail of a singly linked list whose
head and tail are defined by the second and third
arguments. On return, the first argument will be
modified so that it points to the next node of the list.
J O I N () appends the list whose head and tail are
defined by the third and fourth arguments to the list
whose head and tail are defined by the first and
second arguments. For simplicity, the first and
fourth arguments become the head and tail of the
resulting list.

void Qsort(NodePTR *first, NodePTR *last)
{

NodePTR iesHEAD=NULL, iesTAIL=NULL;
NodePTR equHEAD=NULL, equTAIL=NULL;
NodePTR iarHEAD=NULL, IarTAIL=NULL;
NodePTR current = *first;
int pivot, info;

if (current =: NULL)
return;

pivot = current->data;
APPEND(current, equHEAD, equTAIL) ;
while (current != NULL) {

info = current->data;
if (info < pivot)

APPEND(current,lesHEAD, iesTAIL)
else if (info > pivot)

APPEND(current,larHEAD,iarTAIL)
else

APPEND(current,equHEAD,equTAIL);
)

Qsort(&iesHEAD, &iesTAIL);
Qsort(&larHEAD, &iarTAIL);
JOIN(iesHEAD, iesTAIL,equHEAD, equTAIL);
JOIN(iesHEAD,equTAIL,iarHEAD, iarTAIL);
*first = iesHEAD;
*last = iarTAIL;

Figure 3: Quick Sort

At a first glance, merge sort may not be a good
candidate since the middle node is required to
subdivide the given list into two sublists of equal
length. Fortunately, moving the nodes alternatively

to two lists would also solve this problem
(Sedgewick [6]). Then, sorting these two lists
recursively and merging the results into a single list
will sort the given one. Figure 4 depicts the basic
idea of this merge sort.

NodePTR Msort(NodePTR first)
{

NodePTR iistlHEAD = NULL;
NodePTR iistlTAIL = NULL;
NodePTR iist2HEAD = NULL;
NodePTR list2TAIL = NULL;

if (first==NULL [[first->next==NULL)
return first;

while (first != NULL) {
APPEND(first,listlHEAD, IistlTAIL);
if (first != NULL)

APPEND(first iist2HEAD,iist2TAIL);
)
iistlHEAD = Msort iistlHEAD);
Iist2HEAD = Msort Iist2HEAD);
return merge(listlHEAD, iist2HEAD);

Figure 4: Merge Sort

Moreover, almost all external sorting algorithms can
be used for sorting linked lists since each involved
file can be considered as a linked list that can only
be accessed sequentially. Note that one can sort a
doubly linked list using its next fields as if it is a
singly linked one and reconstruct the p r e v fields
after sorting with an additional scan.

5 Comparisons
Of these six algorithms, two (sediment sort and tree
sort) use a doubly linked list while the other four
(bubble sort, selection sort, quick sort and merge
sort) use a singly linked list. Due to the similarity
between sediment sort and bubble sort, one can
immediately conclude that the latter is faster since
fewer pointer manipulations are involved.
Furthermore, the selection sort should be faster than
the bubble sort since the former requires only n-1
swaps while the latter may require as many as n(n-
1)/2. Thus, for these three algorithms, the issue is
not which one is faster than the other, but to
determine the relative efficiency.

All of these six algorithms were coded in ANSI C
and SWAP(), APPEND() and J O I N () are C
macros rather than functions except for the sediment

Page 6 3C ONLINE Volume 3, Number 2 April 1996

sort whose swap function is taken directly from
Carraway's paper. 2 For those who love C++, these
macros and variable parameters can easily be
changed to ± n l ± n e functions and aliases,
respectively. Each sorting algorithm is repeated
several times sorting the same set of input to
minimize timing error and the average elapsed time
is recorded. The c l o c k () function is used to
retrieve the elapsed time between the start and the
end of a sorting algorithm, excluding data generation
and all other operations. Note that c l o c k () returns
the number of clock ticks rather than the number of
seconds. Moreover, since c l o c k () returns elapsed
time rather than user time (i.e., the CPU time used
by a user program), this test is performed under MS-
DOS rather than Windows and Unix to minimize
the multitasking effect. The machine used for this
test is an Intel 66mhz 486DX2 IBM PC compatible
and the compiler is Watcom C/C++ Version 10.0
with compiler options set to / o n e a t x / z p 4 / 4 / f p3
as suggested by Watcom for maximum efficiency.

Table 1: Running Time for n = 100 to 1000

which is a doubly linked list implementation of
bubble sort, is about 1.5 times slower than the
bubble sort. Its cause could be some extra time for
maintaining two link fields. The function
implementation of swapping might consume some
processing time as well. Swapping is implemented
with C macros in all other algorithms.

Table 2: Running Time for n = 2000 to 10000

] O(nZ) Group I O(nlog2n) Group]

n D-Bub S-Bub Select Msort Qsort Tree

2000 159 127 93 2.75 2.00 1.38

3000 379 302 220 3.38 3.38 2.88

4000 693 549 401 5.50 4.12 4.12

5000 1104 867 643 6.00 6.88 5.50

6000 1763 1395 1082 9.00 8.88 6.38

7000 3037 2604 2169 1 2 . 3 8 11.00 9.62

8000 4449 3850 '3252 1 3 . 7 5 11.62 10.25

9000 5515 4630 3917 1 6 . 3 8 14,38 12,25

10000 6591 , - " 5 5 0 9 4619 1 9 . 2 5 16.50 12.25

O(n 2) Group O(nlog2n) Group

n D-Bubl S-Bubl Select Msort Qsort Tree

100 0.22 0.12 0.10 0.08 0.07 0.05

200 0.98 0.54 0.44 0.15 0.13 0,10

300 2.20 i.22: 0.76 0.23 0.22 0.19

400 4.18 2.42 1.44 0.32 0.30 0.21

500 6.38 3.741 2.18 0.42 037 029

600 10.22 6.48 4.06 0.53 0.51 0.40

700 15.38 10.10 6.46 0.69 0.57 0.43

800 21.20 14.82 9.68 0.76 0.69 0.51

900 28.34 20.20 13.62 0.88 i 0.79 0.61
I

1000 36.58 26.14 17.88 1.01l 0.89 0.69

Since some algorithms perform better for small size
input but poorly for large ones, timing will be
divided into two groups. Table 1 and Table 2
contain the number of clock ticks used for all six
algorithms. These two tables show that the fastest
algorithm is the tree sort and the slowest is the
sediment sort. Merge sort, quick sort and tree sort
have very similar timing results. Sediment sort,

2 All test programs are available on request. Please send an e-mail to the
author.

3C ONLINE

Note that comparing timing values of two algorithms
for a particular n usually does not provide much
insight. This is particularly true if two algorithms
from different groups are compared. For example,
the sediment sort is about four times slower than the
tree sort when n = 100 and it becomes 538 times
slower when n = 10000. By the definition of O0,
the number of data items n and the required clock
ticks t to sort them satisfy t=ot(n 2) and t=ct(nlog~n)
for the O(n 2) group and the O(nlog~n) group,
respectively. A least square (regression) fit, taking
n and t as input, will deliver an estimation of the
constant factor it. 3 Table 3 shows this result. The
third column is the ratio of the second and the first
columns. Note that n is divided by 100 to make the
value ct larger. So, the equations are t=offk 2) and
t=o~(klog2k), where k=n/100.

Now we can compare these constant factors to
determine their relative efficiency. For the O(n 2)
group, if n _< 1000, the sediment sort is 1.43 =
0.342743 / 0.239701 (resp., 2.14 = 0.342743 /

3 We do not have to write a program to carry out the least square fitting
since m,gst commercial spreadsheet packages such as Lotus 1-2-3, Excel
and Quatro Pro have this capability built-in.

Volume 3, Number 2 April 1996 Page 7

0.160253) times slower than the bubble (resp.,
selection) sort, while the bubble sort is 1.50 =
0.239701 / 0.160253 times slower than the selection
sort. If n > 1000, the sediment sort is 1.19 =
0.649589 / 0.546267 (resp., 1.42 = 0.649589 /
0.456876) times slower than the bubble (resp.,
selection) sort, while the bubble sort is 1.19 =
0.546267 / 0.456876 times slower than the selection
sort. Thus, for larger size input, the speed gap is
narrower than smaller size input.

Table 3: The Constant Factors

Method ~ 1000 > 1000 Ratio

D.Bub 0,342743 0.649589 1.895

S-Bub 0.239701 0,546267 2.279

Select 0.160253 0.456876 2.851

Mso. 0.032090 0.027577 0.859

Qsort 0.028548 0.024358 0,853

Tree 0.021951 0.019862 0.905

For the O(nlog2n) group, if n <_ 1000, the merge sort
is 1.12 = 0.032090 / 0.028548 (resp,, 1.46 =
0.032090 / 0.021951) times slower than the quick
sort (resp., tree sort), while the quick sort is 1.30 =
0.028548 / 0.021951 times slower than the tree sort.
If n > 1000, the merge sort is 1.13 = 0.027577 /
0.024358 (resp., 1.39 = 0.027577 / 0.019862) times
slower than the quick sort (resp., tree sort), while the
quick sort is 1.22 = 0.024358 / 0.019862 times
slower than the tree sort. The speed difference is
very similar to that of the O(n 2) group.

Consider the ratios. Since a larger constant means
less efficient, a ratio that is larger than (resp., smaller
than) one means the corresponding algorithm is more
efficient (resp., less efficient) in handling small input
size. Thus, the O(n ~) group algorithms have better
performance in handling small data set, and the
O(nlog~n) group algorithms are more efficient in
handling larger data set, although the difference is
not as significant as that of the O(n ~) group.
Whatever the input size, the O(nlog:n) group
performs much better than the O(n 2) group. Note
that this only shows the test results for n >_ 100, it
could be different for n < 100.

6 Conclus ion
The six algorithms included in this test are only a
small sample of sorting algorithms. There are other
interesting algorithms that are worth to be mentioned.
For example, the shaker sort is an extension to the
bubble sort in which two bounds are used to limit
the range for next scan (Knuth [4] and Wirth [9]).
Since the shaker sort scans the list in both
directions, it would be very interesting to know the
contribution of using two bounds rather than one in
the bubble sort and the sediment sort.

Two factors are not addressed in this article. Since
the input data for this test are random, some extreme
characteristics cannot be tested. For example, the
tree sort and the quick sort perform poorly if the
input is sorted or reversely sorted, while bubble sort
requires only n-1 comparisons and no swap if the
input is sorted. Therefore, a comparison could be
based on the sortedness of the input data. Second, in
practice input data might not be distinct. Yet another
comparison could be based on the level of data
uniqueness. If there are duplicated items in the
input, some algorithms could perform better than the
others. For example, the quick sort presented in this
paper has the capability of collecting equal items into
a list so that they will not involve in subsequent
sorting phases, while others (i.e., merge sort) are
insensitive to the presence of duplicated data.

Please note that performing these comparison tests is
not new and has been carried out many times based
on different criteria by many researchers ever since
people knew sorting is an important and useful
technique (see Knuth [4] for historical notes).
However, as an educator, I believe that making these
theoretical results down to the earth and accessible
for students would be an important teaching
consideration.

References
1. Jon Bentley, Programming Pearls, Addison-

Wesley, 1986.
2. Jim Carraway, Doubly-Linked Opportunities,

ACM SIG3C 3C ONLINE, Vol. 3 (1996), No. 1
(January), pp. 9-12.

3. R. Hoare, Quicksort, The Computer Journal,
Vol. 5 (1962), pp. 10-15.

Page 8 3C ONLINE Volume 3, Number 2 April 1996

4. Donald E. Knuth, The Art of Computer
Programming. Volume 3: Sorting and Searching,
second printing, Addison-Wesley, 1975.

5. Dalia Motzkin, A Stable Quicksort,
Software-Practice and Experience, Vol. 11
(1981), No. 6, pp. 607-611.

6. Robert Sedgewick, Algorithms in C++,
Addison-Wesley, 1992.

7. Lutz M. Wegner, Sorting a Linked List with
Equal Keys, Information Processing Letters, Vol.
15 (1982), No. 5 (December), pp. 205-208.

8. Mark Allen Weiss, Data Structures and
A l g o r i t h m A n a l y s i s i n C + + ,
Benjamin/Cummings, 1994.

9. Niklaus Wirth, Algorithms & Data Structures,
Prentice-Hall, 1986.

Response from Jim Carraway, author of Doubly-
Linked Opportunities, 3C ONLINE, January 1996:

My purpose in writing the article was to provide a
quick reference (with code, diagrams, and an
example) for instructors whose students ask about
sorting data in the structure of a doubly-linked list.
My students' query was directed to this problem, not
how to sort data with linked lists. I do appreciate,
though, Shene choosing my article for the basis of
his scientific and scholarly approach to this topic.
(Besides, it is always nice to see your name in print.)

When I stated, "The Sediment Sort is one of the
fastest and most efficient sorts for linked lists. ", 1
thought it would be interpreted in the context of the
article. Additionally, when I chose to call my
masterpiece the "Sediment Sort", I thought the play
on "Bubble Sort" would be obvious. I chose not to
call it the "Carraway Sort" because I did not want
my name inexorably linked with it in the annals of
computer science.

I wholeheartedly agree with Shene's last paragraph.
Does the expression, "If a study is not worth doing
at all, it is not worth doing well" mean anything to
you ?

TEAM PROJECTS IN SYSTEMS
ANALYSIS AND DESIGN

By Sandra Brown
and Patricia Nettnin

Finger Lakes Community College
Canandaigua, NY 14424

nettnipm @ snyflcc.fingerlakes.edu
brownsm @snyflcc.fingerlakes.edu

Abstract
An integral part of the AAS degree in Computer
Information Systems (CIS) is a course entitled
Systems Analysis and Design. At Finger Lakes
Community College, we have had great success with
implementing a student team project approach to the
course. The approach has been very effective in that
it allows us to augment and reinforce an extensive
amount of comprehensive material learned in the
standard lecture and textbook. The approach also
promotes team dynamics and group problem-solving
skills that are desperately needed by the CIS graduate
in the workplace. This paper discusses the
advantages to student learning via the team approach
in a Systems Analysis and Design course. The
approach, logistics, activities, and benefits will be
addressed.

Introduction
The Systems Analysis and Design course is required
as part of the CIS degree program and is intended to
be taken in the student's last semester. There are
two reasons for this. First, they must use skills and
knowledge acquired from previous courses, such as
programming and program design. They should also
have knowledge of business communications and
have the ability to use one software desktop
publishing tool. Second, the topics taught in the
course are needed in the workplace by many of our
graduates. Many of our AAS graduates are finding
jobs as computer software developers and computer
support personnel, so they must have an
understanding of the key steps in the systems
development life cycle.

A team approach to problem solving in this course

3C ONLINE Volume 3, Number 2 April 1996 Page 9

