/* ChibiOS/RT - Copyright (C) 2006,2007,2008,2009,2010,2011 Giovanni Di Sirio. This file is part of ChibiOS/RT. ChibiOS/RT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. ChibiOS/RT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . --- A special exception to the GPL can be applied should you wish to distribute a combined work that includes ChibiOS/RT, without being obliged to provide the source code for any proprietary components. See the file exception.txt for full details of how and when the exception can be applied. */ /** * @file MSP430/chcore.h * @brief MSP430 architecture port macros and structures. * * @addtogroup MSP430_CORE * @{ */ #ifndef _CHCORE_H_ #define _CHCORE_H_ #include #include /** * @brief Enables the use of a wait state in the idle thread loop. */ #ifndef ENABLE_WFI_IDLE #define ENABLE_WFI_IDLE 0 #endif /** * @brief Macro defining the MSP430 architecture. */ #define CH_ARCHITECTURE_MSP430 /** * @brief Name of the implemented architecture. */ #define CH_ARCHITECTURE_NAME "MSP430" /** * @brief Name of the architecture variant (optional). */ #define CH_CORE_VARIANT_NAME "MSP430" /** * @brief 16 bits stack and memory alignment enforcement. */ typedef uint16_t stkalign_t; /** * @brief Generic MSP430 register. */ typedef void *regmsp_t; /** * @brief Interrupt saved context. * @details This structure represents the stack frame saved during a * preemption-capable interrupt handler. */ struct extctx { regmsp_t r12; regmsp_t r13; regmsp_t r14; regmsp_t r15; regmsp_t sr; regmsp_t pc; }; /** * @brief System saved context. * @details This structure represents the inner stack frame during a context * switching. */ struct intctx { regmsp_t r4; regmsp_t r5; regmsp_t r6; regmsp_t r7; regmsp_t r8; regmsp_t r9; regmsp_t r10; regmsp_t r11; regmsp_t pc; }; /** * @brief Platform dependent part of the @p Thread structure. * @details This structure usually contains just the saved stack pointer * defined as a pointer to a @p intctx structure. */ struct context { struct intctx *sp; }; /** * @brief Platform dependent part of the @p chThdCreateI() API. * @details This code usually setup the context switching frame represented * by an @p intctx structure. */ #define SETUP_CONTEXT(workspace, wsize, pf, arg) { \ tp->p_ctx.sp = (struct intctx *)((uint8_t *)workspace + \ wsize - \ sizeof(struct intctx)); \ tp->p_ctx.sp->r10 = pf; \ tp->p_ctx.sp->r11 = arg; \ tp->p_ctx.sp->pc = _port_thread_start; \ } /** * @brief Stack size for the system idle thread. * @details This size depends on the idle thread implementation, usually * the idle thread should take no more space than those reserved * by @p INT_REQUIRED_STACK. */ #ifndef IDLE_THREAD_STACK_SIZE #define IDLE_THREAD_STACK_SIZE 0 #endif /** * @brief Per-thread stack overhead for interrupts servicing. * @details This constant is used in the calculation of the correct working * area size. * This value can be zero on those architecture where there is a * separate interrupt stack and the stack space between @p intctx and * @p extctx is known to be zero. * @note In this port the default is 32 bytes per thread. */ #ifndef INT_REQUIRED_STACK #define INT_REQUIRED_STACK 32 #endif /** * @brief Enforces a correct alignment for a stack area size value. */ #define STACK_ALIGN(n) ((((n) - 1) | (sizeof(stkalign_t) - 1)) + 1) /** * @brief Computes the thread working area global size. */ #define THD_WA_SIZE(n) STACK_ALIGN(sizeof(Thread) + \ sizeof(struct intctx) + \ sizeof(struct extctx) + \ (n) + (INT_REQUIRED_STACK)) /** * @brief Static working area allocation. * @details This macro is used to allocate a static thread working area * aligned as both position and size. */ #define WORKING_AREA(s, n) stkalign_t s[THD_WA_SIZE(n) / sizeof(stkalign_t)] /** * @brief IRQ prologue code. * @details This macro must be inserted at the start of all IRQ handlers * enabled to invoke system APIs. */ #define PORT_IRQ_PROLOGUE() /** * @brief IRQ epilogue code. * @details This macro must be inserted at the end of all IRQ handlers * enabled to invoke system APIs. */ #define PORT_IRQ_EPILOGUE() { \ if (chSchIsRescRequiredExI()) \ chSchDoRescheduleI(); \ } /** * @brief IRQ handler function declaration. * @note @p id can be a function name or a vector number depending on the * port implementation. */ #define PORT_IRQ_HANDLER(id) interrupt(id) _vect_##id(void) /** * @brief Port-related initialization code. * @note This function is empty in this port. */ #define port_init() /** * @brief Kernel-lock action. * @details Usually this function just disables interrupts but may perform more * actions. * @note Implemented as global interrupt disable. */ #define port_lock() asm volatile ("dint" : : : "memory") /** * @brief Kernel-unlock action. * @details Usually this function just disables interrupts but may perform more * actions. * @note Implemented as global interrupt enable. */ #define port_unlock() asm volatile ("eint" : : : "memory") /** * @brief Kernel-lock action from an interrupt handler. * @details This function is invoked before invoking I-class APIs from * interrupt handlers. The implementation is architecture dependent, * in its simplest form it is void. * @note This function is empty in this port. */ #define port_lock_from_isr() /** * @brief Kernel-unlock action from an interrupt handler. * @details This function is invoked after invoking I-class APIs from interrupt * handlers. The implementation is architecture dependent, in its * simplest form it is void. * @note This function is empty in this port. */ #define port_unlock_from_isr() /** * @brief Disables all the interrupt sources. * @note Of course non maskable interrupt sources are not included. * @note Implemented as global interrupt disable. */ #define port_disable() asm volatile ("dint" : : : "memory") /** * @brief Disables the interrupt sources below kernel-level priority. * @note Interrupt sources above kernel level remains enabled. * @note Same as @p port_disable() in this port, there is no difference * between the two states. */ #define port_suspend() asm volatile ("dint" : : : "memory") /** * @brief Enables all the interrupt sources. * @note Implemented as global interrupt enable. */ #define port_enable() asm volatile ("eint" : : : "memory") /** * @brief Enters an architecture-dependent IRQ-waiting mode. * @details The function is meant to return when an interrupt becomes pending. * The simplest implementation is an empty function or macro but this * would not take advantage of architecture-specific power saving * modes. * @note This port function is implemented as inlined code for performance * reasons. * @note The port code does not define a low power mode, this macro has to * be defined externally. The default implementation is a "nop", not * a real low power mode. */ #if ENABLE_WFI_IDLE != 0 #ifndef port_wait_for_interrupt #define port_wait_for_interrupt() { \ asm volatile ("nop" : : : "memory"); \ } #endif #else #define port_wait_for_interrupt() #endif #ifdef __cplusplus extern "C" { #endif void port_switch(Thread *ntp, Thread *otp); void port_halt(void); void _port_thread_start(void); #ifdef __cplusplus } #endif #endif /* _CHCORE_H_ */ /** @} */