/* ChibiOS/RT - Copyright (C) 2006,2007,2008,2009,2010,2011 Giovanni Di Sirio. This file is part of ChibiOS/RT. ChibiOS/RT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. ChibiOS/RT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . --- A special exception to the GPL can be applied should you wish to distribute a combined work that includes ChibiOS/RT, without being obliged to provide the source code for any proprietary components. See the file exception.txt for full details of how and when the exception can be applied. */ /** * @file STM32/spi_lld.c * @brief STM32 SPI subsystem low level driver source. * * @addtogroup SPI * @{ */ #include "ch.h" #include "hal.h" #if HAL_USE_SPI || defined(__DOXYGEN__) /*===========================================================================*/ /* Driver exported variables. */ /*===========================================================================*/ /** @brief SPI1 driver identifier.*/ #if STM32_SPI_USE_SPI1 || defined(__DOXYGEN__) SPIDriver SPID1; #endif /** @brief SPI2 driver identifier.*/ #if STM32_SPI_USE_SPI2 || defined(__DOXYGEN__) SPIDriver SPID2; #endif /** @brief SPI3 driver identifier.*/ #if STM32_SPI_USE_SPI3 || defined(__DOXYGEN__) SPIDriver SPID3; #endif /*===========================================================================*/ /* Driver local variables. */ /*===========================================================================*/ static uint16_t dummytx; static uint16_t dummyrx; /*===========================================================================*/ /* Driver local functions. */ /*===========================================================================*/ /** * @brief Stops the SPI DMA channels. * * @param[in] spip pointer to the @p SPIDriver object */ #define dma_stop(spip) { \ dmaChannelDisable(spip->spd_dmatx); \ dmaChannelDisable(spip->spd_dmarx); \ } /** * @brief Starts the SPI DMA channels. * * @param[in] spip pointer to the @p SPIDriver object */ #define dma_start(spip) { \ dmaChannelEnable((spip)->spd_dmarx); \ dmaChannelEnable((spip)->spd_dmatx); \ } /** * @brief Shared end-of-transfer service routine. * * @param[in] spip pointer to the @p SPIDriver object */ static void serve_interrupt(SPIDriver *spip) { /* Stop everything.*/ dma_stop(spip); /* Portable SPI ISR code defined in the high level driver, note, it is a macro.*/ _spi_isr_code(spip); } /*===========================================================================*/ /* Driver interrupt handlers. */ /*===========================================================================*/ #if STM32_SPI_USE_SPI1 || defined(__DOXYGEN__) /** * @brief SPI1 RX DMA interrupt handler (channel 2). * * @isr */ CH_IRQ_HANDLER(DMA1_Ch2_IRQHandler) { CH_IRQ_PROLOGUE(); if ((STM32_DMA1->ISR & DMA_ISR_TEIF2) != 0) { STM32_SPI_SPI1_DMA_ERROR_HOOK(); } serve_interrupt(&SPID1); dmaClearChannel(STM32_DMA1, STM32_DMA_CHANNEL_2); CH_IRQ_EPILOGUE(); } /** * @brief SPI1 TX DMA interrupt handler (channel 3). * * @isr */ CH_IRQ_HANDLER(DMA1_Ch3_IRQHandler) { CH_IRQ_PROLOGUE(); STM32_SPI_SPI1_DMA_ERROR_HOOK(); dmaClearChannel(STM32_DMA1, STM32_DMA_CHANNEL_3); CH_IRQ_EPILOGUE(); } #endif #if STM32_SPI_USE_SPI2 || defined(__DOXYGEN__) /** * @brief SPI2 RX DMA interrupt handler (channel 4). * * @isr */ CH_IRQ_HANDLER(DMA1_Ch4_IRQHandler) { CH_IRQ_PROLOGUE(); if ((STM32_DMA1->ISR & DMA_ISR_TEIF4) != 0) { STM32_SPI_SPI2_DMA_ERROR_HOOK(); } serve_interrupt(&SPID2); dmaClearChannel(STM32_DMA1, STM32_DMA_CHANNEL_4); CH_IRQ_EPILOGUE(); } /** * @brief SPI2 TX DMA interrupt handler (channel 5). * * @isr */ CH_IRQ_HANDLER(DMA1_Ch5_IRQHandler) { CH_IRQ_PROLOGUE(); STM32_SPI_SPI2_DMA_ERROR_HOOK(); dmaClearChannel(STM32_DMA1, STM32_DMA_CHANNEL_5); CH_IRQ_EPILOGUE(); } #endif #if STM32_SPI_USE_SPI3 || defined(__DOXYGEN__) /** * @brief SPI3 RX DMA interrupt handler (DMA2, channel 1). * * @isr */ CH_IRQ_HANDLER(DMA2_Ch1_IRQHandler) { CH_IRQ_PROLOGUE(); if ((STM32_DMA2->ISR & DMA_ISR_TEIF1) != 0) { STM32_SPI_SPI3_DMA_ERROR_HOOK(); } serve_interrupt(&SPID3); dmaClearChannel(STM32_DMA2, STM32_DMA_CHANNEL_1); CH_IRQ_EPILOGUE(); } /** * @brief SPI3 TX DMA2 interrupt handler (DMA2, channel 2). * * @isr */ CH_IRQ_HANDLER(DMA2_Ch2_IRQHandler) { CH_IRQ_PROLOGUE(); STM32_SPI_SPI3_DMA_ERROR_HOOK(); dmaClearChannel(STM32_DMA2, STM32_DMA_CHANNEL_2); CH_IRQ_EPILOGUE(); } #endif /*===========================================================================*/ /* Driver exported functions. */ /*===========================================================================*/ /** * @brief Low level SPI driver initialization. * * @notapi */ void spi_lld_init(void) { dummytx = 0xFFFF; #if STM32_SPI_USE_SPI1 RCC->APB2RSTR = RCC_APB2RSTR_SPI1RST; RCC->APB2RSTR = 0; spiObjectInit(&SPID1); SPID1.spd_thread = NULL; SPID1.spd_spi = SPI1; SPID1.spd_dmarx = STM32_DMA1_CH2; SPID1.spd_dmatx = STM32_DMA1_CH3; #endif #if STM32_SPI_USE_SPI2 RCC->APB1RSTR = RCC_APB1RSTR_SPI2RST; RCC->APB1RSTR = 0; spiObjectInit(&SPID2); SPID2.spd_thread = NULL; SPID2.spd_spi = SPI2; SPID2.spd_dmarx = STM32_DMA1_CH4; SPID2.spd_dmatx = STM32_DMA1_CH5; #endif #if STM32_SPI_USE_SPI3 RCC->APB1RSTR = RCC_APB1RSTR_SPI3RST; RCC->APB1RSTR = 0; spiObjectInit(&SPID3); SPID3.spd_thread = NULL; SPID3.spd_spi = SPI3; SPID3.spd_dmarx = STM32_DMA2_CH1; SPID3.spd_dmatx = STM32_DMA2_CH2; #endif } /** * @brief Configures and activates the SPI peripheral. * * @param[in] spip pointer to the @p SPIDriver object * * @notapi */ void spi_lld_start(SPIDriver *spip) { /* If in stopped state then enables the SPI and DMA clocks.*/ if (spip->spd_state == SPI_STOP) { #if STM32_SPI_USE_SPI1 if (&SPID1 == spip) { dmaEnable(DMA1_ID); /* NOTE: Must be enabled before the IRQs.*/ NVICEnableVector(DMA1_Channel2_IRQn, CORTEX_PRIORITY_MASK(STM32_SPI_SPI1_IRQ_PRIORITY)); NVICEnableVector(DMA1_Channel3_IRQn, CORTEX_PRIORITY_MASK(STM32_SPI_SPI1_IRQ_PRIORITY)); RCC->APB2ENR |= RCC_APB2ENR_SPI1EN; } #endif #if STM32_SPI_USE_SPI2 if (&SPID2 == spip) { dmaEnable(DMA1_ID); /* NOTE: Must be enabled before the IRQs.*/ NVICEnableVector(DMA1_Channel4_IRQn, CORTEX_PRIORITY_MASK(STM32_SPI_SPI2_IRQ_PRIORITY)); NVICEnableVector(DMA1_Channel5_IRQn, CORTEX_PRIORITY_MASK(STM32_SPI_SPI2_IRQ_PRIORITY)); RCC->APB1ENR |= RCC_APB1ENR_SPI2EN; } #endif #if STM32_SPI_USE_SPI3 if (&SPID3 == spip) { dmaEnable(DMA2_ID); /* NOTE: Must be enabled before the IRQs.*/ NVICEnableVector(DMA2_Channel1_IRQn, CORTEX_PRIORITY_MASK(STM32_SPI_SPI3_IRQ_PRIORITY)); NVICEnableVector(DMA2_Channel2_IRQn, CORTEX_PRIORITY_MASK(STM32_SPI_SPI3_IRQ_PRIORITY)); RCC->APB1ENR |= RCC_APB1ENR_SPI3EN; } #endif /* DMA setup.*/ dmaChannelSetPeripheral(spip->spd_dmarx, &spip->spd_spi->DR); dmaChannelSetPeripheral(spip->spd_dmatx, &spip->spd_spi->DR); } /* More DMA setup.*/ if ((spip->spd_config->spc_cr1 & SPI_CR1_DFF) == 0) spip->spd_dmaccr = (STM32_SPI_SPI2_DMA_PRIORITY << 12) | DMA_CCR1_TEIE; /* 8 bits transfers. */ else spip->spd_dmaccr = (STM32_SPI_SPI2_DMA_PRIORITY << 12) | DMA_CCR1_TEIE | DMA_CCR1_MSIZE_0 | DMA_CCR1_PSIZE_0; /* 16 bits transfers. */ /* SPI setup and enable.*/ spip->spd_spi->CR1 = 0; spip->spd_spi->CR1 = spip->spd_config->spc_cr1 | SPI_CR1_MSTR | SPI_CR1_SSM | SPI_CR1_SSI; spip->spd_spi->CR2 = SPI_CR2_SSOE | SPI_CR2_RXDMAEN | SPI_CR2_TXDMAEN; spip->spd_spi->CR1 |= SPI_CR1_SPE; } /** * @brief Deactivates the SPI peripheral. * * @param[in] spip pointer to the @p SPIDriver object * * @notapi */ void spi_lld_stop(SPIDriver *spip) { /* If in ready state then disables the SPI clock.*/ if (spip->spd_state == SPI_READY) { /* SPI disable.*/ spip->spd_spi->CR1 = 0; #if STM32_SPI_USE_SPI1 if (&SPID1 == spip) { NVICDisableVector(DMA1_Channel2_IRQn); NVICDisableVector(DMA1_Channel3_IRQn); dmaDisable(DMA1_ID); RCC->APB2ENR &= ~RCC_APB2ENR_SPI1EN; } #endif #if STM32_SPI_USE_SPI2 if (&SPID2 == spip) { NVICDisableVector(DMA1_Channel4_IRQn); NVICDisableVector(DMA1_Channel5_IRQn); dmaDisable(DMA1_ID); RCC->APB1ENR &= ~RCC_APB1ENR_SPI2EN; } #endif #if STM32_SPI_USE_SPI3 if (&SPID3 == spip) { NVICDisableVector(DMA2_Channel1_IRQn); NVICDisableVector(DMA2_Channel2_IRQn); dmaDisable(DMA2_ID); RCC->APB1ENR &= ~RCC_APB1ENR_SPI3EN; } #endif } } /** * @brief Asserts the slave select signal and prepares for transfers. * * @param[in] spip pointer to the @p SPIDriver object * * @notapi */ void spi_lld_select(SPIDriver *spip) { palClearPad(spip->spd_config->spc_ssport, spip->spd_config->spc_sspad); } /** * @brief Deasserts the slave select signal. * @details The previously selected peripheral is unselected. * * @param[in] spip pointer to the @p SPIDriver object * * @notapi */ void spi_lld_unselect(SPIDriver *spip) { palSetPad(spip->spd_config->spc_ssport, spip->spd_config->spc_sspad); } /** * @brief Ignores data on the SPI bus. * @details This asynchronous function starts the transmission of a series of * idle words on the SPI bus and ignores the received data. * @post At the end of the operation the configured callback is invoked. * * @param[in] spip pointer to the @p SPIDriver object * @param[in] n number of words to be ignored * * @notapi */ void spi_lld_ignore(SPIDriver *spip, size_t n) { dmaChannelSetup(spip->spd_dmarx, n, &dummyrx, spip->spd_dmaccr | DMA_CCR1_TCIE | DMA_CCR1_EN); dmaChannelSetup(spip->spd_dmatx, n, &dummytx, spip->spd_dmaccr | DMA_CCR1_DIR | DMA_CCR1_EN); } /** * @brief Exchanges data on the SPI bus. * @details This asynchronous function starts a simultaneous transmit/receive * operation. * @post At the end of the operation the configured callback is invoked. * @note The buffers are organized as uint8_t arrays for data sizes below or * equal to 8 bits else it is organized as uint16_t arrays. * * @param[in] spip pointer to the @p SPIDriver object * @param[in] n number of words to be exchanged * @param[in] txbuf the pointer to the transmit buffer * @param[out] rxbuf the pointer to the receive buffer * * @notapi */ void spi_lld_exchange(SPIDriver *spip, size_t n, const void *txbuf, void *rxbuf) { dmaChannelSetup(spip->spd_dmarx, n, rxbuf, spip->spd_dmaccr | DMA_CCR1_TCIE | DMA_CCR1_MINC | DMA_CCR1_EN); dmaChannelSetup(spip->spd_dmatx, n, txbuf, spip->spd_dmaccr | DMA_CCR1_DIR | DMA_CCR1_MINC | DMA_CCR1_EN); } /** * @brief Sends data over the SPI bus. * @details This asynchronous function starts a transmit operation. * @post At the end of the operation the configured callback is invoked. * @note The buffers are organized as uint8_t arrays for data sizes below or * equal to 8 bits else it is organized as uint16_t arrays. * * @param[in] spip pointer to the @p SPIDriver object * @param[in] n number of words to send * @param[in] txbuf the pointer to the transmit buffer * * @notapi */ void spi_lld_send(SPIDriver *spip, size_t n, const void *txbuf) { dmaChannelSetup(spip->spd_dmarx, n, &dummyrx, spip->spd_dmaccr | DMA_CCR1_TCIE | DMA_CCR1_EN); dmaChannelSetup(spip->spd_dmatx, n, txbuf, spip->spd_dmaccr | DMA_CCR1_DIR | DMA_CCR1_MINC | DMA_CCR1_EN); } /** * @brief Receives data from the SPI bus. * @details This asynchronous function starts a receive operation. * @post At the end of the operation the configured callback is invoked. * @note The buffers are organized as uint8_t arrays for data sizes below or * equal to 8 bits else it is organized as uint16_t arrays. * * @param[in] spip pointer to the @p SPIDriver object * @param[in] n number of words to receive * @param[out] rxbuf the pointer to the receive buffer * * @notapi */ void spi_lld_receive(SPIDriver *spip, size_t n, void *rxbuf) { dmaChannelSetup(spip->spd_dmarx, n, rxbuf, spip->spd_dmaccr | DMA_CCR1_TCIE | DMA_CCR1_MINC | DMA_CCR1_EN); dmaChannelSetup(spip->spd_dmatx, n, &dummytx, spip->spd_dmaccr | DMA_CCR1_DIR | DMA_CCR1_EN); } /** * @brief Exchanges one frame using a polled wait. * @details This synchronous function exchanges one frame using a polled * synchronization method. This function is useful when exchanging * small amount of data on high speed channels, usually in this * situation is much more efficient just wait for completion using * polling than suspending the thread waiting for an interrupt. * * @param[in] spip pointer to the @p SPIDriver object * @param[in] frame the data frame to send over the SPI bus * @return The received data frame from the SPI bus. */ uint16_t spi_lld_polled_exchange(SPIDriver *spip, uint16_t frame) { spip->spd_spi->DR = frame; while ((spip->spd_spi->SR & SPI_SR_RXNE) == 0) ; return spip->spd_spi->DR; } #endif /* HAL_USE_SPI */ /** @} */