

Version: 1.0

E Ink's Confirmation

TECHNICAL SPECIFICATION

MODEL NO: ED060KG1

Please contact E Ink or its agent for furt	her information.
Customer's Confirmation	
Customer	
Date	
Ву	

The content of this information is subject to be changed without notice.

Approved By 中域
Confirmed By 東域
Prepared By 東域
Prepared By

Revision History

Rev.	Issued Date	Revised	Contents
1.0	January 30,2015	New	

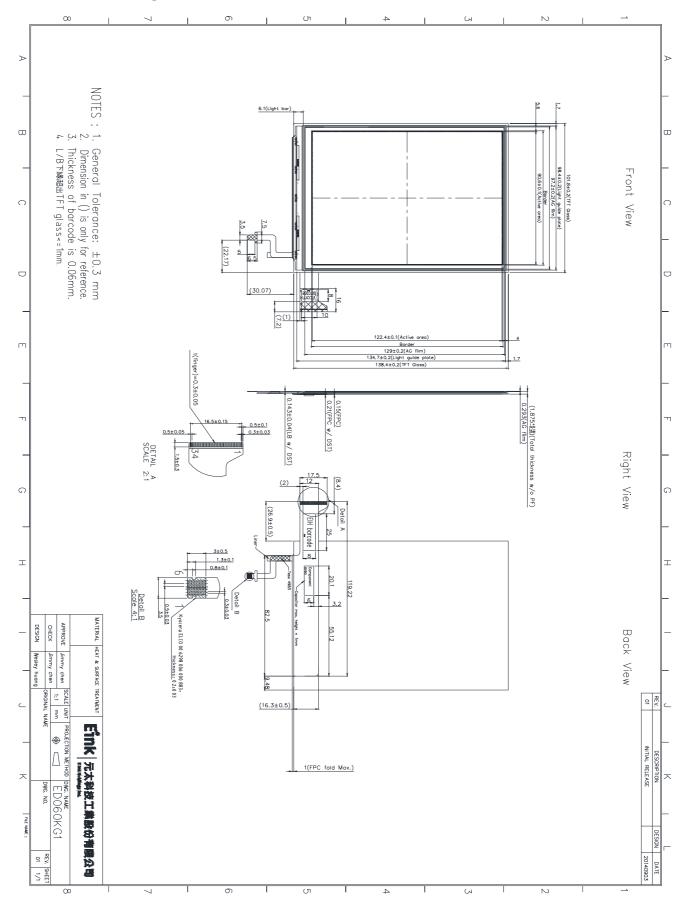
TECHNICAL SPECIFICATION <u>CONTENTS</u>

NO.	ITEM	PAGE
-	Cover	1
-	Revision History	2
-	Contents	3
1	General Description	4
2	Features	4
3	Mechanical Specifications	4
4	Mechanical Drawing of EPD module	5
5	Input/Output Terminals	6
6	Electrical Characteristics	8
7	Power on Sequence	14
8	Refresh Rate	15
9	Optical Characteristics	16
10	Handling, Safety and Environment Requirements And Remark	18
11	Reliability test	20
12	Bar Code definition	21
13	Border definition	22
14	Block Diagram	22
15	Packing	23

1. General Description

ED060KG1 is a reflective electrophoretic E Ink® technology display module based on active matrix TFT substrate. It has 6" active area with 1072 x 1448 pixels, the display is capable to display images at 2-16 gray levels (1-4 bits) depending on the display controller and the associated waveform file it used.

2. Features


- Carta High contrast reflective/electrophoretic technology
- > 1072 x 1448 display
- > Ultra wide viewing angle
- > Ultra low power consumption
- > Pure reflective mode
- ➤ Bi-stable
- ➤ Commercial temperature range
- ➤ Landscape, portrait mode
- > Front light module

3. Mechanical Specifications

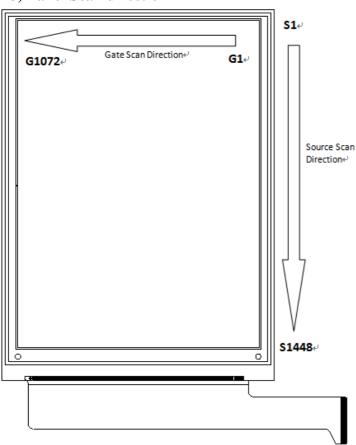
Parameter	Specifications	Unit	Remark
Screen Size	6.0 (3:4 diagonal)	Inch	
Display Resolution	1072 (H)×1448(V)	Pixel	
Active Area	90.584 (H)×122.356 (V)	mm	
Pixel Pitch	0.0845 (H)×0.0845 (V)	mm	
Pixel Configuration	Square		
Outline Dimension	101.8(W)*138.4(H)*1.875(D)	mm	
Module Weight	42±4	g	
Number of Gray	16 Gray Level (monochrome)		
Display operating mode	Reflective mode		

4. Mechanical Drawing of EPD Module

5. Input/Output Interface

5-1) Connector type: FH34S-34S-0.5SH(50)-Hirose

Pin Assignment


Pin#	Signal	Description	Remark
1	VNEG	Negative power supply source driver	
2	VGL	Negative power supply gate driver	
3	VSS	Ground	
4	NC	NC	
5	NC	NC	
6	VDD	Digital power supply drivers	
7	VSS	Ground	
8	XCL	Clock source driver	
9	VSS	Ground	
10	XLE	Latch enable source driver	
11	XOE	Output enable source driver	
12	XSTL	Start pulse source driver	
13	D0	Data signal source driver	
14	D1	Data signal source driver	
15	D2	Data signal source driver	
16	D3	Data signal source driver	
17	D4	Data signal source driver	
18	D5	Data signal source driver	
19	D6	Data signal source driver	
20	D7	Data signal source driver	
21	VCOM	Common connection	
22	NC	NC	
23	NC	NC	
24	NC	NC	
25	NC	NC	
26	VSS	Ground	
27	MODE 1	Output mode selection gate driver	
28	CKV	Clock gate driver	
29	SPV	Start pulse gate driver	
30	NC	NC	
31	Border	Border connection	
32	VSS	Ground	
33	VPOS	Positive power supply source driver	
34	VGH	Positive power supply gate driver	

5-2) Pin assignment of LED circuit

No.	Pin assignment		
1	Anode		
2	Anode		
3	Dummy		
4	Dummy		
5	Cathode		
6	Cathode		

5-3) Panel Scan direction

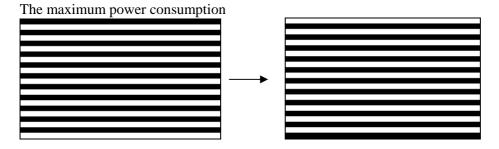
6. Electrical Characteristics

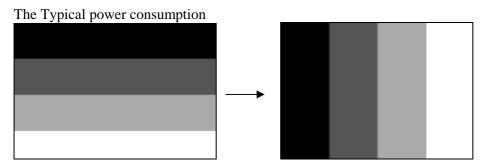
6-1) Absolute Maximum Ratings:

Parameter	Symbol	Rating	Unit	Remark
Logic Supply Voltage	VDD	-0.3 to $+7$	V	
Positive Supply Voltage	V _{POS}	-0.3 to +18	V	
Negative Supply Voltage	V _{NEG}	+0.3 to -18	V	
Max .Drive Voltage Range	V_{POS} - V_{NEG}	36	V	
Supply Voltage	VGH	-0.3 to +45	V	
Supply Voltage	VGL	-25.0 to +0.3	V	
Supply Range	VGH-VGL	-0.3 to +45	V	
Operating Temp. Range	TOTR	0 to +50	$^{\circ}\!\mathbb{C}$	
Storage Temperature	TSTG	-25 to +60	$^{\circ}\!\mathbb{C}$	

6-2) Panel DC characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Signal ground	V_{SS}		-	0	-	V
T ' X7 1, 1	V_{DD}		1.7	1.8	2.1	V
Logic Voltage supply	I_{VDD}	$V_{DD}=1.8V$	-	3.5	8.3	mA
Gate Negative supply	VGL		-21	-20	-19	V
Gate Negative supply	$ m I_{GL}$	VGL =-20V	-	1.2	12	mA
Gate Positive supply	VGH		24	25	26	V
Gate Positive supply	$ m I_{GH}$	VGH = 25V	_	1.2	2.5	mA
Source Magative supply	$V_{ m NEG}$		-15.4	-15	-14.6	V
Source Negative supply	I_{NEG}	$V_{NEG} = -15V$	-	8.5	160	mA
Course Desitive sumulu	V_{POS}		14.6	15	15.4	V
Source Positive supply	I_{POS}	$V_{POS} = 15V$	-	8.2	166	mA
Border supply	V_{COM}		-4	Adjusted	-0.3	V
Asymmetry source	V_{Asym}	$V_{POS} + V_{NEG}$	-800	0	800	mV
Common voltage	V_{COM}		-4	Adjusted	-0.3	V
Common voltage	I_{COM}			0.2	-	mA
Panel Power	P		-	315	5200	mW
Standby power panel	P _{STBY}		-	-	0.01	mW

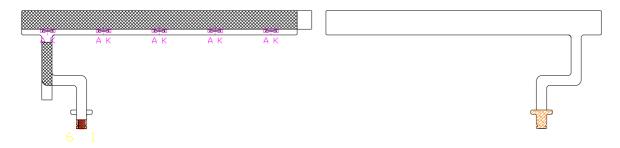

- The maximum power consumption is measured using 85Hz waveform with following pattern transition: from pattern of repeated 1 consecutive black scan lines followed by 1 consecutive white scan line to that of repeated 1 consecutive white scan lines followed by 1 consecutive black scan lines. (Note 6-1)
- The Typical power consumption is measured using 85Hz waveform with following pattern transition: from horizontal 4 gray scale pattern to vertical 4 gray scale pattern. (Note 6-2)
- The standby power is the consumed power when the panel controller is in standby mode.
- The listed electrical/optical characteristics are only guaranteed under the controller & waveform


provided by E Ink.

- Vcom is recommended to be set in the range of assigned value $\pm 0.1 V$
- The maximum I_{COM} inrush current is about 1000 mA

Note 6-1

Note6-2

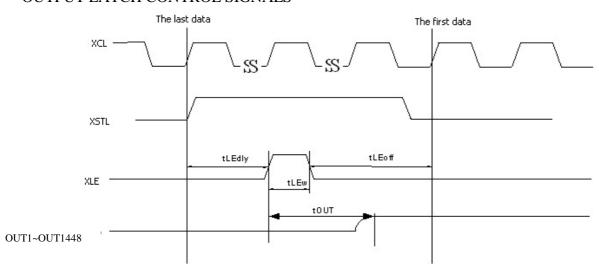


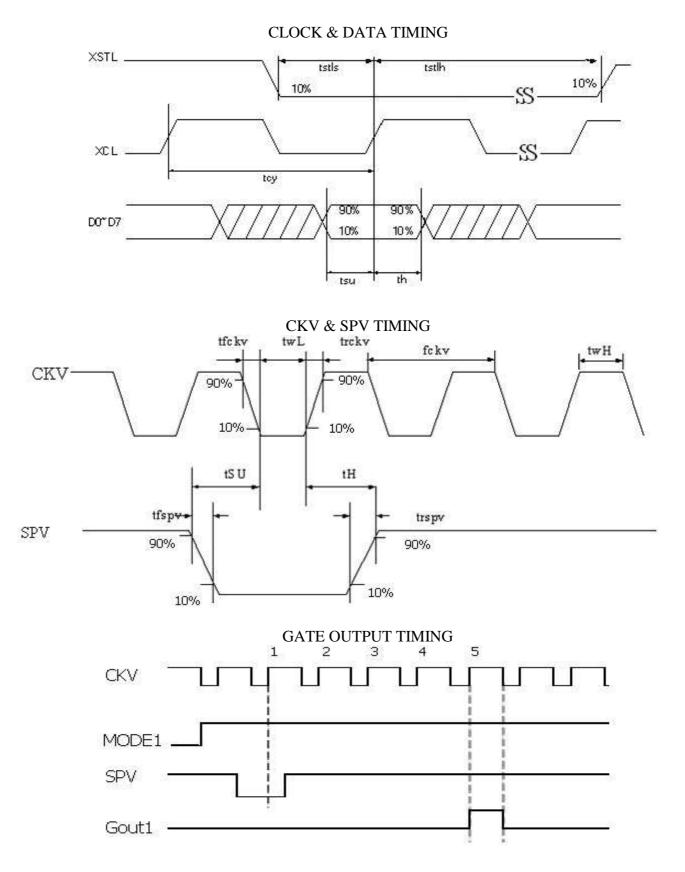
6-3) Recommended driving condition for Front light

GND = 0 V, Ta = 25°C

Parameter	Symbol	Min	TYP	MAX	Unit	Remark
Supply voltage of LED Front light	V_{LED}	14	15.5	17	V	Serial 5 pcs
Supply current of LED Front light	I_{LED}		20		mA	
Front light Power Consumption	P_{LED}	280	310	340	mW	Note 6-3

Note 6-3: I_{LED}=20 mA with 1-serial LED circuit(5 LEDs)




6-4)Panel AC characteristics

VDD=1.7V to 2.1V, unless otherwise specified.

Parameter	Symbol	Min.	Тур.	Max.	Unit
Clock frequency	fckv	-	-	200	kHz
Minimum "L" clock pulse width	twL	1	-	-	us
Minimum "H" clock pulse width	twH	1	-	-	us
Clock rise time	trckv	-	-	100	ns
Clock fall time	tfckv	-	-	100	ns
SPV setup time	tSU	100	-	twH-100	ns
SPV hold time	tH	100	-	twH-100	ns
Pulse rise time	trspv	-	-	100	ns
Pulse fall time	tfspv	-	-	100	ns
Clock XCL cycle time	tcy	22.22	-	-	ns
D0 D7 setup time	tsu	11	-	-	ns
D0 D7 hold time	th	11	-	-	ns
XSTL setup time	tstls	0.5* tcy	-	0.8* tcy	ns
XSTL hold time	tstlh	0.5* tcy	-	180*tcy-tstls	ns
XLE on delay time	tLEdly	4.5* tcy	-	-	ns
XLE high-level pulse width (When VDD=1.7V to 2.1V)	tLEw	400	-	-	ns
XLE off delay time	tLEoff	250	-	-	ns
Output setting time to +/- 30mV(C _{load} =200pF)	tout	-	-	20	us

OUTPUT LATCH CONTROL SIGNALS

Note: First gate line on timing

After 5CKV, gate line is on.

6-5) Controller Timing

This timing mode is depicted on Figure 1 and Figure 2 and it refers to timing of Source Driver Output Enable (SDOE) and Gate Driver Clock (GDCK). Note, that in this mode LGON follows GDCK timing.

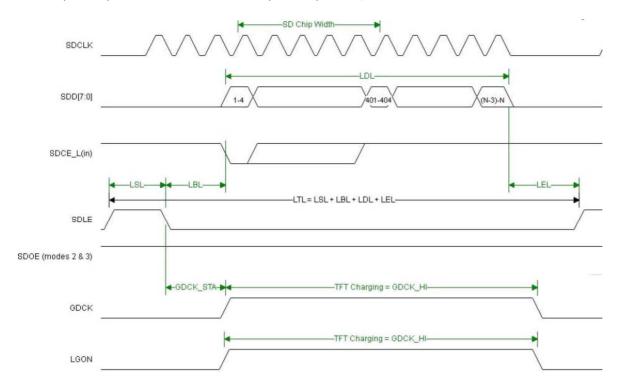


Figure 1 Line Timing in Mode 3

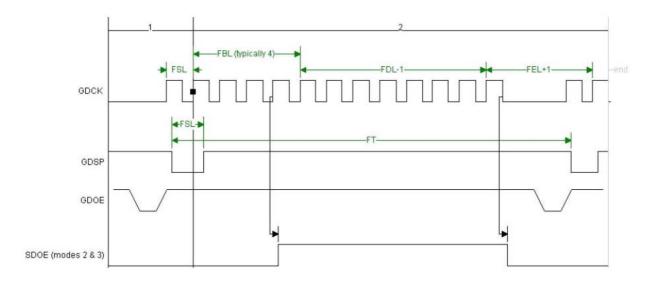


Figure 2 Frame Timing in Mode 3

Table Timing Parameters Table

Mode SDCK [MHz] Pixels Per SDCK	3 40 4	Resolution 1072*1448				
I ' Demonstra I GDGW	LSL	LBL	LDL	LEL	GDCK_STA	LGONL
Line Parameters [SDCK]	14	8	362	51	100	281
	-	-	-	-	-	-
Line Parameters (us)	0.35	0.20	9.05	1.28	2.5	7.03
	FSL	FBL	FDL	FEL	-	FR 【Hz】
Frame Parameters [lines]	2	4	1072	4	-	84.99
					-	-
Frame Parameters [us]	21.75	43.5	11658	43.5	-	-

Note 1: For parameters definition, see Section 6. Active Matrix Electronic Paper Display Timings

Note 2 : For Isis Controller GDCK_STA and LGONL are not settable parameters ; GDCK_STA=LBL, LGONL=LDL+0.5

Note 3 : For Freescale SoC GDOE Low pulse represent FSL and GDSP pulses with the first period of FBL.

Note 4:

SDCLK = XCL

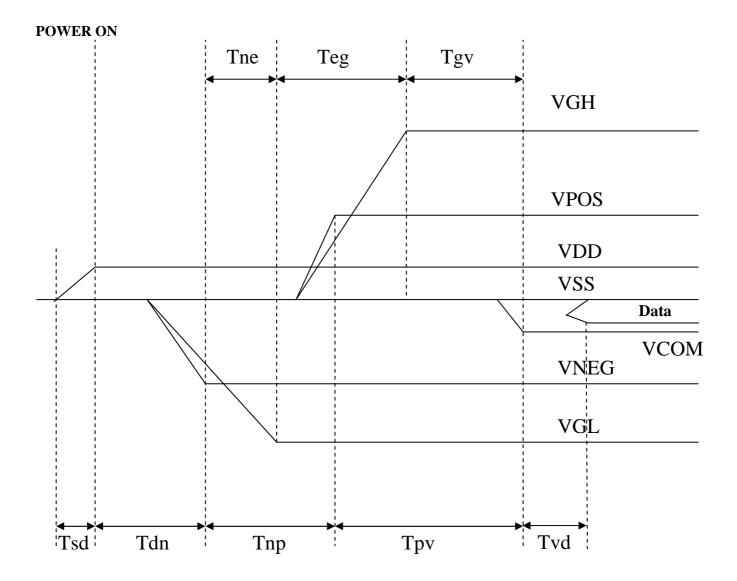
 $SDD[7:0] = D0 \sim D7$

 $SDCE_L(in) = XSTL$

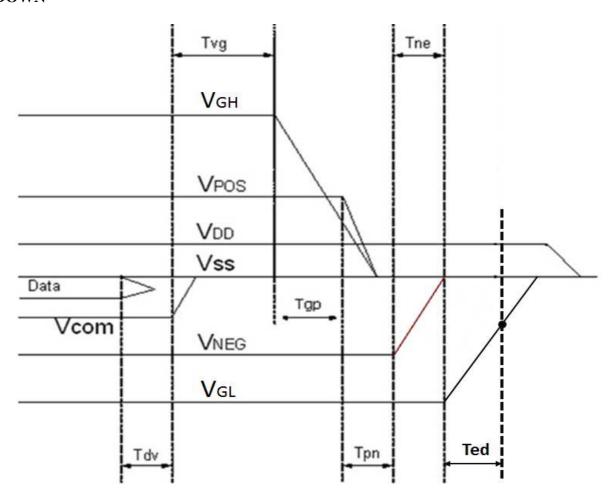
GDCK = CKV

GDSP = SPV

GDOE = Mode 1


SDOE = XOE

7. Power on Sequence


Power Rails must be sequenced in the following order:

- 1. VSS \rightarrow VDD \rightarrow VNEG \rightarrow VPOS (Source driver) \rightarrow VCOM
- 2. VSS \rightarrow VDD \rightarrow VGL \rightarrow VGH (Gate driver)

	Min	Max
Tsd	30us	-
Tdn	100us	-
Tnp	1000us	-
Tpv	100us	-
Tvd	100us	1
Tne	Ous	1
Teg	1000us	-
Tgv	100us	-

POWER DOWN

	Min	Max	Remark
Tdv	100μs	-	
Tvg	0μs	-	
Tgp	0μs	-	
Tpn	0μs	-	
Tne	Оµѕ	-	
Ted	0.5s	-	Discharged point @ -7.4 Volt

Note1: Supply voltages decay through pull-down resistors.

Note2: Begin to turn off VGL power after VNEG and VPOS are completely or almost discharged to

GND state.

Note3: VGL must remain negative of Vcom during decay period

8. Refresh Rate

The module ED060KG1 is applied at a maximum screen refresh rate of 85Hz.

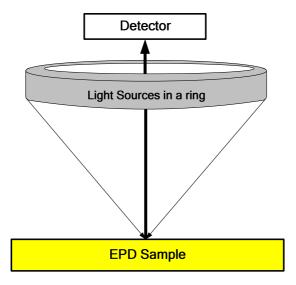
	Min	Max
Refresh Rate	-	85Hz

9. Optical characteristics

9-1) Specifications

Measurements are made by PR655 with MS-75 or equivalent SepctaScan Colorimeter with that the illumination is at an angle 45° from the perpendicular at the center of sample surface, and the detector is perpendicular unless otherwise specified

 $T = 25^{\circ}C$


Symbol Parameter			Conditions		Min Typ.		Morr	TIn:4	
Symbol	ymboi Parameter Condit		latuons	MIII	Max	Unit	Note		
R	Reflec	tance	White		40	47	-	%	Note 9-1
Gn	N _{th} C	Brey		Front Light off	-	DS+(WS-DS)×n /(m-1)	-	L*	-
	Lev	/el	-						
CR	Cont Rat		-		12	17	-	-	Note 9-2
Brightness		θ=0°		-	180	ı	cd/m²	Note 9-4	
White Chromaticity x		X	θ=0°		0.28	0.32	0.36	-	
Winte Chron	laticity	y	θ=0	Front Light On	0.30	0.34	0.38	-	_
Luminance Uniformity		θ=0°		60	75	-	%	Note 9-5	
CR	Cont Rat		θ=0°		10	14	1	-	Note 9-6

WS: White state, DS: Dark state, Gray state from Dark to White: DS \ G1 \ G2... \ Gn... \ Gm-2 \ WS m: 4 \ 8 \ 16 \ when 2 \ 3 \ 4 bits mode

9-2) Definition of contrast ratio for Front light off mode

The contrast ratio (CR) is the ratio between the reflectance in a full white area (Rl) and the reflectance in a dark area (Rd):

CR = RI/Rd

9-3) Reflection Ratio

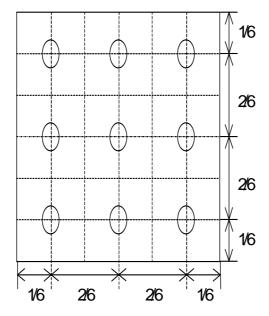
The reflection ratio is expressed as:

 $R = Reflectance Factor_{white board} \quad x \quad (L_{center} / L_{white board})$

 L_{center} is the luminance measured at center in a white area (R=G=B=1). $L_{white \ board}$ is the luminance of a standard white board. Both are measured with equivalent illumination source. The viewing angle shall be no more than 2 degrees.

9-4)Optical characteristics are determined after the front light has been 'ON' and stable for approximately 60 minutes in a dark environment at 25° C. The values specified are at an approximate distance 50cm from the EPD display surface at a viewing angle of Φ and θ equal to 0° . The typical luminance value is measured at LED current 20 mA.

9-5) The uniformity is defined as


The Minimum Brightness of the 9 testing Points

The Maximum Brightness of the 9 testing Points

Ambient illumination : < 1 Lux

Measuring direction: Perpendicular to the surface of module

The test pattern is white

9-6) Definition of contrast ratio for Front light on mode

Luminance when Testing point is White

 $CR = \frac{}{Luminance when Testing point is Black}$

10. HANDLING, SAFETY AND ENVIROMENTAL REQUIREMENTS AND REMARK

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

IPA solvent can only be applied on active area and the back of a glass. For the rest part, it is not allowed.

Mounting Precautions

- (1) It's recommended that you consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module.
- (2) It's recommended that you attach a transparent protective plate to the surface in order to protect the EPD. Transparent protective plate should have sufficient strength in order to resist external force.
- (3) You should adopt radiation structure to satisfy the temperature specification.
- (4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the PS at high temperature and the latter causes circuit break by electro-chemical reaction.
- (5) Do not touch, push or rub the exposed PS with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of PS for bare hand or greasy cloth. (Some cosmetics deteriorate the PS)
- (6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach the PS. Do not use acetone, toluene and alcohol because they cause chemical damage to the PS.
- (7) Wipe off saliva or water drops as soon as possible. Their long time contact with PS causes deformations and color fading.

Data sheet status						
Product specification	This data sheet contains formal specifications.					
Limiting values						

Data sheet status

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

REMARK

All The specifications listed in this document are guaranteed for module only. Post-assembled operation or component(s) may impact module performance or cause unexpected effect or damage and therefore listed specifications is not warranted after any Post-assembled operation.

11. Reliability test

	TEST	CONDITION	METHOD	REMARK	
1	High-Temperature Operation	T = +50°C, RH = 30% for 240 hrs	IEC 60 068-2-2Bp		
2	Low-Temperature Operation	T = 0°C for 240 hrs	IEC 60 068-2-2Ab		
3	High-Temperature Storage	T = +60°C, RH = 26% for 240 hrs	IEC 60 068-2-2Bp		
4	Low-Temperature Storage	T = -25°C for 240 hrs Test in white pattern	IEC 60 068-2-1Ab		
5	High-Temperature, High-Humidity Operation	T = +40°C, RH = 90% for 168 hrs	IEC 60 068-2-3CA		
6	Temperature Cycle	nperature Cycle $ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
7	Solar radiation test	765 W/m ² for 168hrs,40°C Test in white pattern	IEC60 068-2-5Sa		
8	Package Vibration	1.04G, Frequency: 10~500Hz Direction: X,Y,Z Duration: 1 hours in each direction	Full packed for shipment		
9	Package Drop Impact	Drop from height of 122 cm on concrete surface. Drop sequence: 1 corner,3 edges,6 faces One drop for each.	Full packed for shipment		
10	Stylus Tapping	POLYACETAL Pen: Top R:0.8mm Load: 300gf Speed: 2 times/sec Total 13,500times,		Test with bezel and device to simulate full product test.	
11	Electrostatic Effect (non-operating)	(Machine model)+/- 250V 0Ω, 200pF	IEC 62179, IEC 62180		

Actual EMC level to be measured on customer application Note: The protective film must be removed before temperature test.

< Criteria >

In the standard conditions, there is not display function NG issue occurred. (including: line defect, no image). All the cosmetic specification is judged before the reliability stress.

12. Bar Code definition

12-1) Panel Barcode Label

EDJ 00 9 01 1 P 7 4 00361 A T

1 2 3 4 2 5 6 2 7 2 8

1 : EPD model code:

ED060KG1: EDJ,EDR

2 : Internal control codes:Do not care

3 : FPL reversion code

Carta: 9,R

4 : FPL batch code:

01~99	001~099	G0~G9	160~169	Q0~Q9	230~239	X0~X9	300~309
A0~A9	100~109	H0~H9	170~179	R0~R9	240~249	Y0~Y9	310~319
B0~B9	110~119	J0~J9	180~189	S0~S9	250~259	Z0~Z9	320~329
C0~C9	120~129	K0~K9	190~199	T0~T9	260~269		
D0~D9	130~139	L0~L9	200~209	U0~U9	270~279		
E0~E9	140~149	M0~M9	210~219	V0~V9	280~289		
F0~F9	150~159	N0~N9	220~229	W0~W9	290~299		

5 : Year:

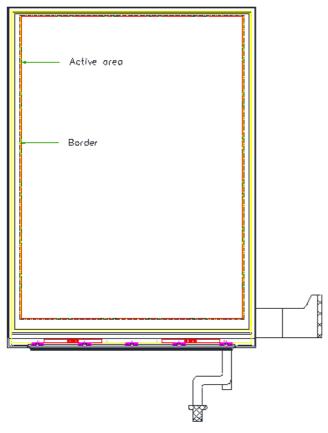
N: 2013 / P: 2014 / Q: 2015 / R: 2016 /... / Z: 2024

6 : Month:

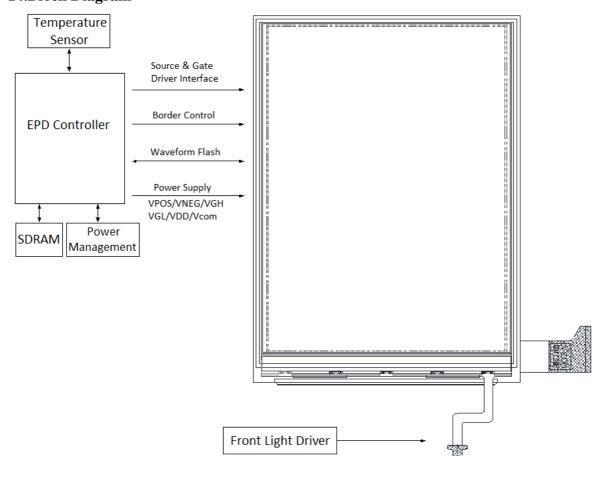
1:Jan. 2:Feb. ... 9:Sep. A:Oct. B:Nov. C:Dec.

7 : Serial number

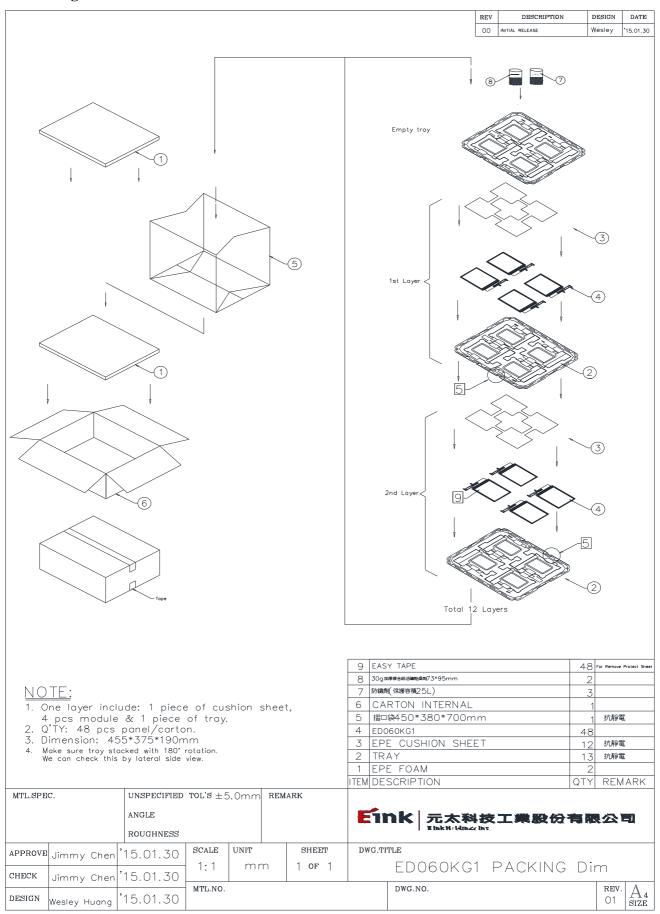
00000-99999


8 : MFG code:

E Ink Yanzhou: FAB1: K, FAB2: Y, FAB3: T, FAB4: L, FAB5: G,


E Ink Hsinchu: P

13. Border definition



14.Block Diagram

15.Packing

