
Application Environment

UMI-R3-131

ii

Application Environment
Revision

Number History Date

Earlier releases as UMI-R3-102 and UMI-R3-130

001 First release as UMI-R3-131 99-05

iii

Contents

Chapter 1 ... 1
Introduction ... 1

Chapter 2 ... 3
Basic Robot Components .. 3

Robot .. 4
Controller ... 7
Robcomm3 Software ... 10
Additional Information .. 11

Chapter 3 ... 13
Peripheral Components ... 13

Teach Pendant .. 14
Gripper ... 15
Extra Axes .. 16
External Devices ... 17

Chapter 4 ... 19
Robot Space and Motion ... 19

Overview ... 20
Cartesian Space, Locations, and Motion 24
Rotational Space, Locations, and Motion 31
Cylindrical Space and Motion .. 36
Tool Space and Motion .. 40
Base Offset ... 48
Limp Motion ... 50

Chapter 5 ... 53
Safe Robot Operation .. 53

iv

1

C H A P T E R 1

Introduction

This guide describes:

• basic components of robot systems

• peripheral components of robot systems

• robot space and motion

• safe robot use.

2 Application Environment: Introduction

3

C H A P T E R 2

Basic Robot Components

The basic system consists of the following robot components:

• robot

• controller

• computer running Robcomm3 software

4 Application Environment: Basic Robot Components

Robot
The robot transports payloads and performs other motion tasks in space. A
robot arm consists of a set of links and joints. Each joint moves under the
control of a motor which is controlled by the system controller.

CRS manufactures the following types of robots:

• Articulated Robots (A255, A465, and F3)

• Track Robots (T265, T475, and F3t)

Application Environment: Basic Robot Components 5

Articulated Robots
An articulated arm has joints for rotary motion. The joints are connected by
links. At one end, there is a base attached to a platform, and at the other
end, a mechanical interface for a gripper or other tool.

CRS manufactures three articulated robots: A255, A465, and F3.

A255

joints/degrees of freedom

reach

nominal payload

5

559 mm.

1.0 kg.

A465

joints/degrees of freedom

reach

nominal payload

6

710 mm.

2.0 kg.

F3

joints/degrees of freedom

reach

nominal payload

6

710 mm.

3.0 kg.

6 Application Environment: Basic Robot Components

Track Robots
A track robot is an articulated robot mounted on an extra linear axis. The
extra linear joint (or degree of freedom) is used to transport the robot over
the length of the track. A track robot has an increased workspace compared
to a robot without a track.

CRS manufactures three track robots: T265, T475, and F3t. Each track robot
can be ordered with track lengths of 1, 2, 3, 4, or 5 meters.

T265

joints/degrees of freedom

max reach (5 m track)

nominal payload

6

6.12 m.

1.0 kg.

T475

joints/degrees of freedom

max reach (5 m track)

nominal payload

7

6.42 m.

2.0 kg.

F3t

joints/degrees of freedom

max reach (5 m track)

nominal payload

7

6.42 m.

3.0 kg.

Application Environment: Basic Robot Components 7

Controller
The controller is a computerized electronics unit whose primary function is
to provide power and control for the robot. It also contains electronics to
control other devices. The controller provides control via CRS Robotics Robot
Operating System (CROS), which runs RAPL-3 programs.

The Operating System
Basic Functions

The controller is the hardware platform for the robot operating system
(CROS). CROS manages the resources of the controller, controls the
execution of programs, and supports all robot system operations including
running the core robot components and interfacing to any peripheral robot
components.

RAPL-3 Programs

CROS is the platform for running compiled RAPL-3 programs, which contain
step-by-step instructions. You create the program using the Robcomm3
editor window. After you successfully compile the program, you must
transfer it to the controller.

To run a RAPL-3 program, access CROS through the terminal, the teach
pendant, or the front panel. For details on accessing the terminal and then
using the system shell or the application shell, see the Robcomm3 section
and then the sections on CROS and the System Shell or Application Shell in
this Application Development Guide. For details on the teach pendant, see the
Teach Pendant section in this Application Development Guide. For details on
the front panel and pendant programming commands, see the Front Panel
section in this Application Development Guide and the RAPL-3 Language
Reference Guide.

Multi-Process Capability

Within CROS, the basic unit of activity is termed a process. A program, when
it is running, is a process. CROS can run several processes at the same time.
When you run an application, you use one or more processes. Each process
can start new processes and other tasks within the operating system. Some
processes send signals to the robot arm to initiate motion.

8 Application Environment: Basic Robot Components

Your application can take advantage of the multi-process capability of CROS.
In addition to a main process, other processes are used to perform other
functions, such as monitoring inputs and controlling other devices. Different
processes can move the arm; however, only one process can have control of
the robot at any one time. Control of the robot can be given from one process
to another by transferring point of control.

Standard Processes

CROS on a C500 controller has been designed with several standard
modules that have specific purposes. These modules include:

• System Shell

• Application Shell

System Shell

The system shell is a command line interpreter (like DOS) for CROS. It
interprets your command words into a form that CROS can understand.

You use the system shell to manage processes of the operating system,
modify files and directories, configure options, and troubleshoot problems.
You can also run robot applications from the system shell.

Application Shell (ash)

The application shell (ash) is an interactive command line interpreter with a
database used to develop applications.

With ash you can move the arm, teach locations, modify other variables, and
run your applications. The application shell supports a database for
locations and other variables.

Front Panel
Although the front panel is physically a part of the controller, it is one of
several points where you can control the robot system. The front panel has
five switches for operator input. You can write the program for your
application to start after an input from the front panel switch. In other
words, you can use the front panel switch to start an application.

Serial Port
The controller has a serial port, located at the front of the controller, for
connecting to the computer.

Input/Output
The back of the controller has two connectors to control and monitor other
devices: General Purpose I/O (GPIO) and System I/O (SYSIO).

GPIO

The GPIO connector has a total of 16 inputs and 16 outputs available to
connect to external hardware. The inputs can be monitored by the user
application. Likewise, the application can also control devices in the work
cell by connecting to the outputs.

Application Environment: Basic Robot Components 9

CROS can interface with simple digital devices, receiving signals from
sensors or sending signals to actuators. The device can be a PLC
(programmable logic controller) which controls several devices as a
subsystem and communicates with CROS. A PLC receives inputs from
sensors, makes decisions according to pre-programmed logic, and sends
outputs, usually to simple electrical or mechanical devices such as motors,
switches, valves, etc.

SYSIO

The SYSIO port supports remote front panels and e-stop devices. It provides
access to the front panel circuits (push-button inputs and the LED
indicators) and contains an e-stop contact pair.

10 Application Environment: Basic Robot Components

Robcomm3 Software
Robcomm3 is application software designed for writing and compiling robot
application programs in RAPL-3 (Robot Application Programming Language).
Robcomm3 also has a terminal emulation feature to facilitate communication
between the computer and the controller. To run Robcomm3, your computer
should have the following minimum specifications.

CPU 486 at 33 MHz

RAM 8 Mbytes

operating system Windows 3.1/Windows 95/WindowsNT

screen resolution 800 x 600, SuperVGA, 256 colors

serial port Standard RS-232

Robcomm3 provides:

• tools to create, edit, and compile RAPL-3 programs

• a utility to transfer files between the computer and the controller

• a terminal to access the controller.

Programs and the Compiler
To write and compile a RAPL-3 program, use an editor window in
Robcomm3. You can write and compile a RAPL-3 program using only
Robcomm3 on the computer. You do not need to be connected to the
controller to write or compile programs.

Use the editor to write a program. Use the compiler to translate that source
code to object code. When a program has compiled successfully, you must
transfer the object file to the controller in order to run the application.

File Transfer
After you compile the program, send it to the controller. Robcomm3 sends
the file from the computer’s file system to the controller. Fastacid, a process
of CROS, receives the file and places it in the CROS file system.

The process of transferring the program to the controller is automated if you
setup an application using the App Setup feature in Robcomm3. When you
setup an application, prepare and send the application by using the
Robcomm3 Send command.

Terminal Access to the Controller
Robcomm3’s terminal window provides access between your computer’s
keyboard and monitor and the system and application shells on the
controller. You can interact with either of the two shells.

Application Environment: Basic Robot Components 11

Additional Information
Additional information about basic robot components can be found in these
places.

Component Model Publication

articulated robot F3 F3 Robot Arm User Guide

A465 A465 Robot Arm User Guide

A255 A255 Robot Arm User Guide

track robot F3t, T475, T265 Track User Guide

controller C500C
(with all robots)

C500C Controller User Guide

C500B
(with F3/F3t)

F3 Robot System User’s Guide

C500
(with A and T
series robots)

C500 Controller User's Guide

teach pendant This Application Development Guide,
reference section titled Teach Pendant

Robcomm3 This Application Development Guide,
reference section titled Robcomm3

application shell This Application Development Guide,
reference section titled Application Shell

system shell This Application Development Guide,
reference section titled CROS and the
System Shell

CROS This Application Development Guide,
reference section titled CROS and the
System Shell

RAPL-3 RAPL-3 Language Reference Guide

gripper servo Servo Gripper Option User’s Guide

12 Application Environment: Basic Robot Components

13

C H A P T E R 3

Peripheral Components

In addition to basic robot components, your system may comprise one or
more of the following peripheral components:

• teach pendant

• gripper or other end-of-arm tool

• extra axes

• external devices.

14 Application Environment: Peripheral Components

Teach Pendant
The teach pendant is a hand-held terminal for controlling the robot remotely.
With the teach pendant, you can move the robot arm, teach locations and
other variables, and select and run applications.

During the development of an application, the teach pendant is used
primarily to move the arm. It can also be used for teaching locations,
modifying variables, and running programs.

The teach pendant provides robot motion capabilities that exceed what is
available through the application shell (ash). This includes the teach
pendant’s capability to move the arm as long as a key is pressed and stop
when that key is released. The pendant has an e-stop and a live-man switch.
The pendant can be used by the operator near the location. For these
reasons, the teach pendant tool is recommended for teaching locations.

It is not necessary to have the teach pendant connected to run an
application. Once an application is developed, the teach pendant can be
disconnected from the controller and the application run from the system
shell, the application shell, or the front panel.

If you have a POLARA-based lab system, your ability to use the teach
pendant is limited.

Application Environment: Peripheral Components 15

Gripper
The end-of-arm tool is attached to the free end of the robot arm. Often the
end-of-arm tool is a gripper, but it can be a dispenser, spray head, buffing
wheel, or other tool.

CRS has three standard grippers. The servo grippers are powered by servo
controlled electric motors and the pnuematic gripper is powered by
pressurized air.

Servo Gripper Standard Fingers

finger opening range

finger length

0 to 50 mm.

25 mm.

Servo Gripper Microplate Fingers

finger opening range

finger length

82 to 132 mm.

70 mm.

Pneumatic Gripper

finger opening range

finger length

20 degrees

76 mm.

16 Application Environment: Peripheral Components

Extra Axes
An axis, like a joint of an arm, is a place where motion occurs. A system can
have additional axes. The motion of an additional axis is controlled by the
controller which sends signals to the motor and receives a feedback signal
from the encoder on the axis.

A track is the most common extra axis.

Application Environment: Peripheral Components 17

External Devices
A system may contain other devices such as a conveyor or elevator in an
industrial application, or a pipettor, incubator, fridge, washer, or pump in a
laboratory application. These devices can be controlled by the operating
system, CROS. Features of the RAPL-3 programming language allow you to
write control of the external devices or external applications into your robot
application programs.

The system may have additional inputs from sensors monitoring the status
of tasks, motion, or external devices within the system. Sensors may also be
monitoring the interface between the robot system and the larger industrial
or laboratory process, for example, when a part is delivered to the robot work
cell or when a machine is ready to accept work from the robot work cell.

18 Application Environment: Peripheral Components

19

C H A P T E R 4

Robot Space and Motion

This chapter describes:

• arm space, using coordinate systems

• locations in the arm space

• simple arm motions in space

• arm motions available from different application development tools

• programming for different robot tools

• programming for different positions of the base

• manual positioning of the arm.

20 Application Environment: Robot Space and Motion

Overview
This overview summarizes topics described in detail later in this chapter.

Describing Space
A coordinate system is a way to describe the space around the arm. CRS
robots can use any of four coordinate systems: world, joint, cylindrical, and
tool. Coordinates of any of these systems can describe any point in robot
space.

Coordinate System

World

Joint

Cylindrical

Tool

Identifying Locations
A location is a specific point in space that is stored by the robot for use in an
application. There are two types of locations: cloc (cartesian location) that
stores coordinates based on the world coordinate system, and ploc (precision
location) that stores coordinates based on the joint coordinate system.

Coordinate System Location Type

World cloc (cartesian location)

Joint ploc (precision location)

Robot Motion
The robot arm can move relative to the coordinate system along a particular
axis. The robot motion can be continuous or incremental. The types of arm
motion available also depends on the robot tool you are using. As an
example, you can move the robot using the cylindrical coordinate system
using the teach pendant but not ash.

Straight Line Motion

One type of motion is straight line motion, in which several joint’s motions
are synchronized so that the tool axis moves along a straight line. In straight
line motion, the motion of each robot axis is coordinated so that the end
effector moves in a straight line. You can move in a straight line in from any
position along specified world or tool axis. You can also move in a straight
line to a specified variable if the variable is a cloc (cartesian location). You
cannot move in straight line mode to a precision location.

Application Environment: Robot Space and Motion 21

Straight line movements are useful when you must maintain the level or
orientation of the payload. For example, if you are moving liquids you could
use straight line movements to prevent the liquid from spilling.

Moving Along or Around Axes

You can move the tool along most axes of coordinate systems. For straight
motion, a number of joints rotate at the same time to move the tool in a
straight line along the axis.

Coordinate
System

Axis Motion Availability and Description

World X straight motion (positive or negative)

Y straight motion (positive or negative)

Z straight motion (positive or negative)

Joint any arm joint rotation (positive or negative)

Cylindrical θ rotation (positive or negative)

R straight motion (positive or negative)

Z straight motion (positive or negative)

Tool X straight motion (positive or negative)

Y straight motion (positive or negative)

Z straight motion (positive or negative)

Note: In the world and tool coordinate systems, you can move in straight line
motion. Straight line motion is not available in the joint and cylindrical
coordinates systems.

Moving Continuously or Incrementally

Some motions, along or around an axis, are available in a continuous or
incremental type of motion. Some of these are available only using certain
robot system tools, such as ash, or the teach pendant. The following table
highlights motion types available with specific system tools.

22 Application Environment: Robot Space and Motion

Coordinate Motion Tool

System Teach
Pendant

Application
Shell

RAPL-3
Program

World continuous motion
along axis

velocity [no
equivalent]

[no equivalent]

incremental
motion along axis

jog wx, wy, wz jog()

alignment to
specified axis

align align align()

straight line motion
parallel to an axis

[no
equivalent]

wxs, wys, wzs wxs(), wys(),
wzs()

Joint continuous motion
around axis

velocity [no
equivalent]

[no equivalent]

incremental
motion (deg.)
around axis

jog joint joint()

incremental
motion (pulses)
around axis

[not
available]

motor motor()

Cylindrical continuous motion
along axis

velocity [no
equivalent]

[no equivalent]

Tool continuous motion
parallel to tool axis

velocity [no
equivalent]

[no equivalent]

specified distance
motion parallel to
a tool axis

[no
equivalent]

tx, ty, tz
depart

jog_t()
tx,(), ty(), tz()
depart

straight line motion
parallel to a tool
axis

[no
equivalent]

txs, tys, tzs
departs

jog_ts()
txs(), tys(),
tzs()
departs()

Note: Refer to the teach pendant and application shell sections of this manual
for details on the teach pendant and ash motion features. For RAPL-3 motion
command details see the RAPL-3 Language Reference Guide.

Moving the Arm When Limp
Robot motion is controlled by servo motors for all motion initiated from the
robot controller or robot system tools. However, you can disengage servo
motor control of the robot joints with the limp command. When limp, the

Application Environment: Robot Space and Motion 23

robot joints can be moved by hand. Individual joints can be limped, or all of
the joints can be limped at once.

Limp motion is similar to joint motion; however, in joint motion the servo
motor moves the joint, and in limp motion the joint movement is human or
other external force. The motion however can be considered to be joint
motion.

When an axis is limp, the encoders still supply feedback to the controller.

Warning! Caution must be used when limping joints, because a limped joint
will fall due to gravity or inertia, resulting in robot collisions which can damage
the robot or other equipment.

Moving the Tool Center Point
When moving along an axis or to a specified location, the robot moves the
tool center point (TCP). To ensure that the TCP is the point that you want,
such as the tip of a dispenser or the point halfway between two gripper
fingers, you describe the tool's size and orientation to the software with a tool
transform.

Tool Transform

A tool transform informs the controller of the position of the tool (tool center
point -TCP). Without a tool transform, the controller moves the arm as if the
TCP is the center point of the tool flange surface. A tool transform is the
measurements in the tool coordinate system of the mounted tool’s TCP. The
tool transform also includes the yaw, pitch, and roll coordinates which define
the tool’s orientation.

Base Offset

The origin of the world coordinate system is the center of the base of the
robot. In some cases, for instance if the robot is to be hung suspended above
the workspace, you may need to change this origin. To do so, set a base
offset. A base offset is a set of coordinate values which re-defines the new
origin. Refer to the Application Development section of this Application
Development Guide for the details on setting a tool transform.

24 Application Environment: Robot Space and Motion

Cartesian Space, Locations, and Motion
One way to describe the arm workspace is the world coordinate system. With
this system, points in space are identified by cartesian locations, and motion
parallel to any axis is available from the teach pendant, the application shell
and RAPL-3 programs.

World Coordinate System

The world coordinate system is based on an axis system with three axes: X,
Y, and Z at right angles to each other which intersect at the origin. The
origin is the center of the robot mounting flange when a base offset is not
set. The following figure shows the axis orientation. The Z axis is vertical
with positive Z up. The X and Y axes are horizontal, with positive X forward
away from the front of the arm and positive Y to the side as shown. The
relationship of X, Y, and Z follows the right-hand rule of thumb, index finger,
and middle finger with your palm facing upwards.

Application Environment: Robot Space and Motion 25

World coordinates can describe any point in the world coordinate system. To
store world coordinate data, the software uses cartesian locations.
Coordinates contain data about position and orientation.

Position

The position of a point in the workspace is identified by distances (positive or
negative) along the X, Y, and Z axes from the origin.

For example, in the diagram with the A465, the center of the mechanical
interface can be described as 46.0 cm. in a positive X direction, 0.0 in a Y
direction, and 58.0 in a positive Z direction, or (46.0, 0.0, 58.0).

26 Application Environment: Robot Space and Motion

Orientation

When your tool is at a point in space, it could be oriented in different ways.
For example, it could be pointing downward, parallel to the negative Z axis,
or pointing forward, parallel to the positive X axis.

The orientation of a tool is identified by a rotation (positive or negative)
around the X, Y, and Z axes (or around axes that are parallel to the X, Y, and
Z axes). Rotation around the X axis is called roll, around the Y axis, pitch,
and around the Z axis, yaw. By convention, these are written in the order:
yaw, pitch, roll.

For example, in the diagram with the A465, the mechanical interface is
oriented with no yaw, a 15.0 degree pitch, and a –35.0 degree roll, or (0.0,
15.0, -35.0).

Motion around an axis follows the right-hand rule. When your thumb is
pointing in the positive direction of the axis and your fingers are curled into
your palm, your fingers are pointing in the positive direction of rotation.

Full Coordinates

The full coordinates for a tool point are written in the order: X, Y, Z, yaw,
pitch, roll. The example is (46.0, 0.0, 58.0, 0.0, 15.0, -35.0).

Note: A tool on an A255 with five degrees of freedom has five coordinates: X,
Y, Z, pitch, and roll. It does not have yaw.

Application Environment: Robot Space and Motion 27

Cartesian Locations

In RAPL-3, a cartesian location, a cloc, represents a point in the arm
workspace defined by cartesian-style world coordinates.

The data in a cloc correspond to dimensions in the workspace and are
independent of arm type. The location is the same whether accessed by an
F3 or an A465.

The data are also independent of robot pose. The location might be accessible
by the arm in different poses. In other words, a cloc location variable does
not necessarily define unique robot axis positions.

Motion with World Coordinates
You can move the tool center point (TCP) parallel to the world X, Y, and Z.
You can also align the axis of the tool to a world axis.

Note: The axis of the tool is defined as the axis perpendicular to the plane of
the mechanical interface pointing away from the interface. For the A series
robots, the tool axis is by definition the tool X axis. For the F3, the tool axis
is defined as the tool Z axis. Refer to the Tool Space and Motion section.

Motion Tool
Teach

Pendant
Application

Shell
RAPL-3
Program

continuous motion along axis velocity [no equivalent] [no equivalent]

incremental motion along axis jog wx, wy, wz,
xrot, yrot, zrot

jog()

straight line motion [not available] wxs, wys, wzs,
xrots, yrots, zrots

zrots(), yrots(), xrots()
jog_ws()

alignment to axis align align align()

Continuous Motion

You can move the TCP by continuous motion along any axis of the world
coordinate system, but only with the teach pendant.

With the teach pendant, you select Vel (velocity) type of motion and World
mode. You set the speed with the Speed Up and Speed Down keys. Pressing
a coordinate key (X, Y, Z, yaw, pitch, or roll, positive or negative) moves the
TCP continuously as long as the key is pressed.

 10 % VEL WORLD

F1 F2 F3 F4 ESC
– X +

– Y +

28 Application Environment: Robot Space and Motion

– Z + SPEED
DOWN

SPEED
UP

– yaw +

– pitch +

– roll +

Incremental Motion

You can move the TCP by specified increments along any axis of the world
coordinate system with the teach pendant, ash, or a RAPL-3 program.

Teach Pendant: Jog

With the teach pendant, select Jog type of motion and World mode. You set
the incremental distance using the multi-purpose Speed Up and Speed Down
keys. One press of a coordinate key moves the TCP one increment.

 10 JOG WORLD

RAPL-3 Program: jog_w()

In a RAPL-3 program, you use the jog_w() command.

You specify the axis with a string of characters and the direction and
incremental distance with a positive or negative number.

Editor

jog(JOG_X,-20)

You cannot rotate the TCP in yaw, pitch, or roll with the jog() command.
Instead you can use the zrot(), yrot(), or xrot() commands. Refer to the RAPL-
3 Language Reference Guide.

Straight Line Motion

You can move the robot in the world coordinate system with incremental
straight line movements, so that the orientation of the end effector is
unchanged. The straight line motion options are available only from ash and
RAPL-3.

RAPL-3 Program: jog_ws()

In a RAPL-3 program, use the jog_ws() command.

You specify the axis with a string of characters and the direction and
incremental distance with a positive or negative number.

Editor

jog(JOG_X,-20)

You cannot rotate the TCP in yaw, pitch, or roll with the jog() command.
Instead you can use the zrots(), yrots(), or xrots() commands. Refer to the
RAPL-3 Language Reference Guide.

Application Environment: Robot Space and Motion 29

Application Shell: wxs

From the application shell, you can move the robot in straight line movement
parallel to a world axis with the wxs, wys, wzs, xrots, yrots, and zrots
commands. Each command requires only a distance parameter.

Terminal

application > wxs 10

For example, wxs 10 moves the end effector in a straight line 10 (in. or mm.)
parallel to the world X axis. The units depends on the configuration.

Alignment

You can align the tool axis parallel to any axis of the world coordinate system
with the teach pendant, ash, or a RAPL-3 program.

The tool axis is usually straight out from the tool center point, but is
described in detail in Tool Coordinate System and Tool Transform.

Teach Pendant: Align

With the teach pendant, you select Align type of motion and World mode.

 ALIGN WORLD

Pressing a coordinate key, X, Y, or Z, either positive or negative, aligns the
tool axis parallel to the positive or negative X, Y, or Z axis.

Application Shell: align

From the application shell, you can use the align command to set the tool
axis parallel to one of the world X,Y, or Z axes, either negative or positive
direction. To align to the negative Z axis enter:

Terminal

application > align -3

To align with the closest world axis:

Terminal

application > align n

RAPL-3 Program: align()

In a RAPL-3 program, use the align() command.

Specify the axis with a string which begins with a positive or negative sign.
You also specify the speed for aligning with a number.

Editor

align(10,-ALIGN_Z)

30 Application Environment: Robot Space and Motion

You can align to whichever axis is nearest the current orientation.

Editor

align(20,ALIGN_NEAR)

Application Environment: Robot Space and Motion 31

Rotational Space, Locations, and Motion
A second way to describe the arm workspace is the joint coordinate system.
With this system, points are identified by precision locations and motion
around a joint axis available from the teach pendant, the application shell,
and RAPL-3 programs.

Joint Coordinate System
The joint coordinate system is a rotational coordinate system. It is based on
rotation around each joint axis.

Axes

There are as many axes as joints. Each axis passes through the joint and is
the center of rotation of that joint.

Direction of Rotation

For joint 1, positive rotation corresponds to rotation around the positive Z
world axis. For joints 2, 3, and 5, positive rotation is rotation that lifts the
mechanical interface up and away from the base when the end of the arm is
in front of the base. For joints 4 and 6, positive rotation corresponds to
rotation around the positive Z world axis if the arm is positioned straight up.
This is the same as rotation around the positive X world axis if the outer arm
is positioned horizontally in front of the rest of the arm.

32 Application Environment: Robot Space and Motion

Coordinates and Locations
Joint coordinates can describe any point in the arm workspace. To store joint
coordinate data, the software uses precision locations.

Precision Pulses

Joint coordinates are based on precision pulses.

Each joint contains an encoder that generates pulses as it rotates (about 200
pulses for each degree of rotation for most non-wrist joints). Any position of
the arm can be defined by the number of precision pulses away from zero,
for each joint.

Zero is set at the factory with each joint at a certain position. For example,
for joint 1, zero is set with the arm facing forward. Pulse counts for joint 1
can range from +48611 to –48611 (all robots).

Joint Coordinates

Any point in the workspace and any tool orientation can be identified by
these pulse counts of the joints of the arm.

In the diagram with the A465, the center of the mechanical interface can be
described as (0, –1500, –25000, –3500, 0, 0).

Application Environment: Robot Space and Motion 33

Precision Locations

In RAPL-3, a precision location, a ploc, represents a point in the arm
workspace defined by precision pulse counts.

The data in a ploc depend on the arm. With different gear ratios in different
models of arms, the same ploc places one model of arm at one point in the
workspace and another model of arm at another point.

34 Application Environment: Robot Space and Motion

Motion with Joint Coordinates
You can move the tool center point (TCP) according to joint axes. With the
tools available, you move one joint at a time. You cannot use straight line
motion with motion based on the joint coordinates.

Motion Tool
Teach

Pendant
Application

Shell
RAPL-3
Program

continuous motion
around axis

velocity [no equivalent] [no equivalent]

incremental motion (in degrees)
around axis

jog joint joint()

incremental motion (in motor pulses)
around axis

[not available] motor motor()

straight line motion [not available] [not available] [not available]

Continuous Motion

You can move the TCP by continuous motion around any axis of the joint
coordinate system, but only with the teach pendant.

Teach Pendant: Vel

With the teach pendant, you select Vel (velocity) type of motion and Joint
mode. You set the speed with the Speed Up and Speed Down keys. Pressing
an axis key (Ax1, Ax2, Ax3, Ax4, Ax5, or Ax6, positive or negative) moves the
TCP continuously as long as the key is pressed.

 10 % VEL JOINT

F1 F2 F3 F4 ESC
– Ax1 +

– Ax2 +

– Ax3 + SPEED
DOWN

SPEED
UP

– Ax4 +

– Ax5 +

– Ax6 +

Pressing an axis key rotates the TCP around the axis, in a positive or
negative direction.

Incremental Motion by Degrees

You can move a joint by specified degrees with the teach pendant, the
application shell, and a RAPL-3 program.

Application Environment: Robot Space and Motion 35

Teach Pendant: Jog

With the teach pendant, you select Jog type of motion and Joint mode. You
set the rotational increment of degrees using the multi-purpose Speed Up
and Speed Down keys. One press of an axis key moves TCP one increment.

 0.1 deg JOG JOINT

Application Shell: joint

With the application shell, use the joint command.

Specify the axis with a number and specify the direction and amount of
rotation with a signed number.

Terminal

application>joint 2, –45

RAPL-3 Program: joint()

In a RAPL-3 program, use the joint() command.

Specify the axis with a number and specify the direction and amount of
rotation with a signed number.

Editor

joint(1,-45)

Incremental Motion by Pulses

You can move a joint by a specified number of encoder pulses with the
application shell and a RAPL-3 program, but not with the teach pendant.

Application Shell: motor

With the application shell, use the motor command.

Specify the axis with a number and specify the direction and number of
encoder pulses with a signed number.

Terminal

application>motor 3, –2500

RAPL-3 Program: motor()

In a RAPL-3 program, use the motor() command.

Specify the axis with a number and specify the direction and number of
encoder pulses with a signed number.

Editor

motor(3,-2500)

36 Application Environment: Robot Space and Motion

Cylindrical Space and Motion
A third way of describing space is the cylindrical coordinate system. Motion
in the cylindrical system is only available using the teach pendant. The
application shell and the RAPL-3 language do not support cylindrical
locations.

Cylindrical Coordinate System
The cylindrical coordinate system is based on one vertical axis, Z. The
system is defined by: 1) a rotation around the Z axis, 2) a distance away from
the Z axis, and 3) a distance (height) along the axis.

Rotation: θθθθ
Rotation is around the Z axis. For rotation, the origin (zero degrees) is
forward, in front of the arm. Rotation follows the right-hand rule: with your
thumb pointing in the positive direction of the Z axis, your curled fingers
point in the positive direction of rotation. Rotation is represented by the
Greek letter theta, θ.

Radius: R

Radius is the distance away from the Z axis.

Application Environment: Robot Space and Motion 37

Height: Z

Height is the distance along the Z axis. The origin of the Z axis is the center
of the base mounting surface, with positive above and negative below.

Cylindrical Coordinates
Cylindrical coordinates describe the position of a point in the cylindrical
coordinate system and the orientation at a point.

Position

The position of a point in the workspace is identified by rotation, radius, and
height.

For example, in the diagram with the A465, the centre of the mechanical
interface can be described as 0.0 degrees from the origin of rotation, 46.0 in
an R direction, and 58.0 in. in a positive Z direction, or (0.0, 46.0, 58.0).

Orientation

At a point in space, your tool could be oriented in different ways. Orientation
in the cylindrical coordinate system is described in a way similar to
orientation in the world coordinate system.

Orientation is identified by a rotation, positive or negative, around cylindrical
axes: R (roll), tangent of arc defined by R and θ (pitch), and Z (yaw), written
in the order: yaw, pitch, roll.

38 Application Environment: Robot Space and Motion

For example, in the diagram with the A465, the mechanical interface is
oriented with no yaw, a 15.0 degree pitch (positive around the tangent of θ),
and a –35.0 degree roll (negative around the R axis), or 0.0, 15.0, -35.0.

Full Coordinates

The full coordinates for a tool point are written in the order: θ, R, Z, yaw,
pitch, roll. The example is (0.0, 46.0, 58.0, 0.0, 15.0, -35.0).

Motion with Cylindrical Coordinates
You can move the tool center point (TCP) in cylindrical coordinate system,
but only in continuous motion and only with the teach pendant.

Motion Tool
Teach

Pendant
Application

Shell
RAPL-3
Program

continuous motion velocity [no equivalent] [no equivalent]

With the Teach Pendant: Vel

With the teach pendant, you select Vel (velocity) type of motion and Cyl
(cylindrical) mode. You set the speed with the Speed Up and Speed Down
keys. Pressing a coordinate key (θ, R, Z, yaw, pitch, or roll, positive or
negative) moves the TCP continuously as long as the key is pressed.

 10 % VEL CYL

F1 F2 F3 F4 ESC
– θ +

– R +

Application Environment: Robot Space and Motion 39

– Z + SPEED
DOWN

SPEED
UP

– yaw +

– pitch +

– roll +

Pressing an axis key moves the TCP in the θ, R, or Z direction, or rotates the
TCP around an orientation axis, in a positive or negative direction.

40 Application Environment: Robot Space and Motion

Tool Space and Motion
A fourth way of describing space is the tool coordinate system. Motion along
one axis is available from the teach pendant, the application shell, and
RAPL-3 programs.

Tool Coordinate System
Like the world coordinate system, the tool coordinate system is based on
three straight axes (X, Y, and Z) that are at right angles to each other, are
related according to the right-hand rule, and intersect at an origin.

The tool coordinate system is dependent on the mechanical interface and is
independent of the rest of the arm or work cell. This coordinate system
moves with the mechanical interface. The definition of the tool coordinate
system differs between the A series and F series robots. The difference is
simply in the definition of the axes for the different robots. In A series robots
the tool axis is the X axis and for the F3 robot the tool axis is the Z axis.

Note: The tool axis is the axis pointing perpendicular away from the plane of
the mechanical interface. The other two axis are mutually perpendicular and
parallel to the mechanical interface plane.

Tool coordinate system for A series robots

Application Environment: Robot Space and Motion 41

Origin

The origin is the center of the mechanical interface.

Axes

With an F3, robot the positive Z axis points away from the mechanical
interface towards the tool. It is called the tool axis. The X and Y axes are in
the plane of the mechanical interface.

With an A, series robot the positive X axis points away from the mechanical
interface towards the tool. It is called the tool axis. The X and Y axes are in
the plane of the mechanical interface.

Coordinates

Like world coordinates, tool coordinates contain data about position and
orientation.

Position

The position of a point is identified by distances (positive or negative) along
the X, Y, and Z axes from the origin.

Orientation

The orientation of a tool is identified by a rotation (positive or negative)
around the X, Y, and Z axes (or around axes that are parallel to the X, Y, and
Z axes), written in the order: yaw (around Z), pitch (around Y), and roll
(around X). Rotation around an axis follows the right-hand rule of your
fingers pointing in the positive direction of rotation around the axis when
your thumb is pointing in the positive direction of the axis and your fingers
are curled into your palm.

Tool coordinate system for F3 robot

42 Application Environment: Robot Space and Motion

Coordinate Use

You use tool coordinates to describe the tool to the software. You cannot save
a location to a variable name using the tool frame of reference. Location
variables can only be saved as cloc (cartesian locations - world frame of
reference) or ploc (precision locations - joint frame of reference).

The tool coordinates are used to specify a tool transform, so that the software
controlling the robot motion knows the position and orientation of the end
effector.

Tool Center Point
The tool center point (TCP) is the important point of the tool, where work
occurs. Examples include: the tip of a dispenser, the end of a test probe, or
the point halfway between two gripper fingers.

The TCP is the part of the robot that you want to move to your locations
when you run your application.

You describe the TCP with coordinates in the tool coordinate system.

Tool Transform
To describe the tool to the software, you set a tool transform. After you set a
tool transform, the software modifies the movement of the arm to place the
TCP, not the center of the mechanical interface, at the location.

Moving Without a Transform

If you do not specify a transform, the TCP is set at its default which is the
origin of the tool coordinate system. When the arm moves, the origin of the
tool coordinate system (the center of the mechanical interface) moves to the
location. If you have any tool attached to the interface, that tool extends past
the location and collides with your equipment. As well, any motion along the
tool axis, uses the default tool axis, the Z axis of the tool coordinate system
for the F3 robot or the tool X axis for the a series robots.

Measuring for a Tool Transform

When you measure the distance to the TCP from the mechanical interface,
make sure you measure the total distance including the thickness of any
adapter plate between the mechanical interface and the tool.

The three examples show:

• three types of tools: 1) servo-gripper, 2) pneumatic gripper, 3) dispenser

• on three different arms: 1) A255, 2) A465 requiring 465 adapter, 3) F3
requiring F3 adapter

• with the tool coordinate system’s Z axis pointing: 1) upward, 2) downward,
3) horizontally, with respect to the world coordinate system. Remember:
the tool coordinate system moves with the mechanical interface and the
world coordinate system can be ignored.

Application Environment: Robot Space and Motion 43

arm

tool

TCP

transform
coordinates

A255

CRS servo-gripper

96 mm. on the X axis,
no change in orientation

(96.0, 0.0, 0.0, 0.0, 0.0, 0.0)

arm

tool

TCP

transform
coordinates

A465

pneumatic gripper with
custom-machined fingers
(adapter plate between tool
and mechanical interface)

109 mm. on the X axis,
no change in orientation

(109.0, 0.0, 0.0, 0.0, 0.0, 0.0)

arm

tool

TCP

transform
coordinates

F3

dispenser

114 mm. on the X axis,
16 mm. on the Z axis,
90 degree pitch

(114.0, 0.0, 16.0, 0.0, 90.0, 0.0)

44 Application Environment: Robot Space and Motion

Setting a Tool Transform
You can set a tool transform with the application shell, a RAPL-3 program,
and the teach pendant.

With the Application Shell: tool

With the application shell, you use the tool command.

You specify the position and orientation of the TCP with coordinates of the
tool coordinate system.

Terminal

application>tool 2.0, 0.0, 3.0, 0.0,
90.0, 0.0

With a RAPL-3 Program: tool_set()

In a RAPL-3 program, you use the tool() command.

You specify the position and orientation of the TCP with coordinates of the
tool coordinate system.

Editor

tool_set(2.0, 0.0, 3.0, 0.0, 90.0, 0.0)

Moving in the Tool System
You can move the tool center point (TCP) along tool axes in continuous
motion, in jog motion and also in straight line motion. Robot motion in the
tool coordinates system is tool dependent. The following table lists the
available options as a function of the tool.

Motion Tool
Teach

Pendant
Application

Shell
RAPL-3
Program

continuous motion along
any axis

velocity [no equivalent] [no equivalent]

incremental motion along
any axis, not straight line

[no
equivalent]

tx, ty, tz,
yaw, pitch, roll

tx(), ty(), tz(),
yaw(), pitch(), roll()
jog_t()

incremental motion along
any axis straight line

jog txs, tys, tzs,
yaws, pitchs, rolls

txs(), tys(), tzs(),
yaws(), ptichs() rolls()
jog_ts()

incremental motion along
the tool axis

[no
equivalent]

depart
departs

depart()
departs()

Continuous Motion

You can move the TCP by continuous motion along any axis of the tool
coordinate system, but only with the teach pendant.

Application Environment: Robot Space and Motion 45

Teach Pendant: Vel

With the teach pendant, you select Tool mode and Vel type of motion. You
set the speed with the Speed Up and Speed Down keys. Pressing an axis key
(X, Y, Z, yaw, pitch, or roll, positive or negative) moves the TCP continuously
while the key is pressed.

 10 % VEL TOOL

F1 F2 F3 F4 ESC
– X +

– Y +

– Z + SPEED
DOWN

SPEED
UP

– yaw +

– pitch +

– roll +

Incremental Motion Along Any Axis

You can move incrementally along any tool axis using the teach pendant, the
application shell, or a RAPL-3 command in a program.

Teach Pendant

With the teach pendant, you select Tool mode and Jog type of motion. You
set the speed with the Speed Up and Speed Down keys. Pressing an axis key
(X, Y, Z, yaw, pitch, or roll, positive or negative) moves the TCP in increments
of the specified distance along the axis corresponding to the key pressed.

 10 % Jog TOOL

F1 F2 F3 F4 ESC
– X +

– Y +

– Z + SPEED
DOWN

SPEED
UP

– yaw +

– pitch +

– roll +

46 Application Environment: Robot Space and Motion

Application Shell: tx, ty, tz, yaw, pitch, roll

With the application shell, you use the tx, ty, tz, yaw, pitch and roll
commands. The tx, ty, and tz commands require a distance parameter . The
yaw, pitch and roll commands require an angle parameter. Both the distance
and angle parameters can be positive or negative.

The tx, ty, and tz commands require a distance parameter . The yaw, pitch
and roll commands require an angle parameter. Both the distance and angle
parameters can be positive or negative.

Terminal

application>tz 5
application>yaw 3

RAPL-3 Program: tx()

With the application shell, you use the tx, ty, tz, yaw, pitch, and roll
commands. The tx, ty, and tz commands require a distance parameter . The
yaw, pitch and roll commands require an angle parameter. Both the distance
and angle parameters can be positive or negative.

Editor

tx(5)
yaw(3)

Incremental Straight Line Motion along the tool axis

You can move the TCP in a straight line motion by a specified distance along
any of the tool axis of the robot. This feature can be accessed using the,
application shell or a RAPL-3 program.

Application Shell: txs, tys, tzs, yaws, pitchs, rolls

Each command requires that you specify the direction and distance from the
current position with a signed number.

Terminal

application> txs 5

Turn online mode on when doing pure rotations.

Terminal

application> online on

RAPL-3 Program: txs(), tys(), tzs(), yaws(), pitchs(), rolls().

For each of the commands you specify the direction and distance from the
current position with a signed number.

Editor

 tzs(5)
 yaws(3)

Turn online mode on when doing pure rotations.

Application Environment: Robot Space and Motion 47

Editor

 online(ON)

Incremental Motion Along The Tool Axis

You can move the TCP by a specified distance along the tool axis. The tool
axis is the “approach/depart” axis.

Application Shell: depart

With the application shell, you use the depart command.

You specify the direction and distance from the current position with a
signed number. Positive is away from the location.

Terminal

application>depart 5

RAPL-3 Program: depart()

In a RAPL-3 program, you use the depart() command.

You specify the direction and distance from the current position with a
signed number. Positive is away from the location.

Editor

depart(5)

48 Application Environment: Robot Space and Motion

Base Offset
In a basic robot installation, you install the arm upright at the center of the
work space. The center of the base mounting surface is the origin of the
world coordinate system.

As you design your work cell, you might want to install the arm at a different
position or orientation. For example, to keep the table surface clear, you
might install the arm upside-down over the center of the work space.

To keep the world origin at the center of the table surface, you need to
describe the difference, or “offset”, between the base of the arm and the
origin of the coordinate system. To do this, you set a base offset.

A base offset is given in cartesian coordinates. It states the translation
(distances along the axes) and orientation (rotation around the axes) of the

Application Environment: Robot Space and Motion 49

offset. For example consider the inverted installation as shown above. The
coordinates of the base offset are:

Type of
Coordinate

Specific
Coordinate

Description Value for Above Example

X distance along X axis 0.0

Translation Y distance along Y axis 0.0

Z distance along Z axis 920.0 [mm. for an A255]

Z-rot rotation around Z axis 0.0

Orientation Y-rot rotation around Y axis 180.0

X-rot rotation around X axis 180.0

The resulting base offset is {0.0, 0.0, 920.0, 0.0, 180.0, 180.0}. To set the
base offset use the base set command.

Application Shell: base

With the application shell, you use the base command.

You specify the coordinates. If you use an integer, the system converts it to
the float it needs. This offset is in effect until a new offset is set from ash or a
new offset is set from a program. This setting is lost when the controller is
powered down.

Terminal

application>base 0, 0, 920, 0,
180, 180

RAPL-3 Program: base_set()

In a RAPL-3 program, you use base_set() or its alias base().

Editor

base_set(0, 0, 920, 0, 180,
180)

Without an Offset
If you do not specify a base offset, the origin of the world coordinate system
is set at its default which is the base of the arm.

50 Application Environment: Robot Space and Motion

Limp Motion
When a joint is limp, the servo motors and brakes are disengaged. This
allows a limped joint to be moved manually. All, or selected, axes can be
limped using ash, the teach pendant, or RAPL-3.

Even though the motors and brakes are disengaged, the encoders are
sending signals from the arm back to the controller, informing the controller
of the position of the arm. Since the encoders maintain position data, you
can use limp motion to teach locations.

Warning: Caution must be used when limping joints. A limped joint will fall
due to gravity or inertia. This can result in a collision which can damage the
robot or other equipment.

Application Shell: limp, nolimp

With the application shell, you limp with the limp command and unlimp with
the nolimp command.

Terminal

application> limp

If you do not specify any axis or axes, all the axes are limped. If you are
limping all the axes, be prepared, the robot may fall under gravity. When the
arm is limp, move the arm manually to the position that you want. When
you are finished moving, enter the nolimp command.

Terminal

application> nolimp

You can limp and unlimp one or more specific axes.

Terminal

application> limp 3
application> nolimp 3

Terminal

application> limp 2, 3
application> nolimp 2, 3

RAPL-3 Program: limp(), nolimp()

Although you can use the RAPL-3 commands the limp() and nolimp(), this is
not usually done from within a program. When the program executes the
limp command, the arm falls due to gravity.

Editor

limp()
nolimp()

Application Environment: Robot Space and Motion 51

Teach Pendant

To limp one joint, ensure that Motion Type is set to Limp.

 10 % LIMP

F1 F2 F3 F4 ESC
– Ax1 +

– Ax2 + NO LIMP
ALL

LIMP
ALL

– Ax3 + SPEED
DOWN

SPEED
UP

– Ax4 +

– Ax5 +

– Ax6 +

To limp an individual joint, press the positive (+) axis key for that joint. For
example + Ax1 for joint 1, + Ax2 for joint 2, etc.

To unlimp an individual joint, press the negative (-) axis key for that joint.
For example - Ax1 for joint 1, - Ax2 for joint 2, etc.

To limp all joints, press the LIMP ALL key. To unlimp all joints, press the NO
LIMP ALL key. The Limp motion type does not need to be selected. The LIMP
ALL key and the NO LIMP ALL key can be pressed any time the Manual
Menu screen is displayed on the pendant screen.

52 Application Environment: Robot Space and Motion

53

C H A P T E R 5

Safe Robot Operation

Perform the following safety checks and procedures before beginning your
application development. For additional details, refer to the safety chapter in
your robot user's guide.

Safety Checks

BEFORE applying power to the arm, verify that:

• The robot is properly installed, mounted, and is stable (refer to your robot
system user’s guide for details).

• The electrical connections are correct and the power supplies (voltage,
frequency and interference levels) are within the specified ranges (refer to
your robot system user’s guide for specified ranges).

• If you have modified your system, added hardware, software, or serviced
your robot, recheck all the changes or additions.

• User memory is intact. Errors should not appear in your programs,
location, or variable files.

• Safeguards are in place.

• The physical environment (humidity, atmospheric conditions, and
temperature) is as specified. For more information refer to your robot
system user’s guide.

AFTER applying arm power, verify that:

• The start, stop, and function keys on the teach pendant and controller
front panel function as intended.

• E-stops, safety stops, safeguards, and interlocks are functional.

• At reduced speed the robot operates properly and has the ability to
handle the workpiece.

• Under normal operation, the robot functions properly and has the
capability to perform its intended task at the rated speed and load.

54 Application Environment: Safe Robot Operation

Working Within the Robot’s Workspace
Before entering within the robot’s workspace, perform the following checks
and safety precautions.

• Visually inspect the robot to determine if any conditions exist that can
cause malfunctions or injury to persons.

• If the teach pendant controls are used, test them to ensure that they
function correctly. If any damage or malfunction is found in the teach
pendant, complete the required repairs before allowing personnel to enter
within the robot workspace.

• While programming or teaching locations, ensure that the robot system is
under your sole control.

a) When possible, program the robot with all personnel outside the
safeguarded area.

b) When programming the robot and teaching locations within the
safeguarded area, ensure that robot motion is reduced to at least 25%
speed.

• While servicing the robot arm, ensure that the robot system is under
your sole control.

c) Ensure that the robot is off-line. The arm must not be stopped in, or
running, a program.

d) Ensure that the robot does not respond to any remote signals.

e) Ensure that all safeguards and e-stops are functional.

f) Always remove power to the arm and controller before connecting or
disconnecting cables.

g) Ensure that suspended safeguards are returned to their original
effectiveness prior to initiating robot operation.

• When power to the robot arm is not required, it should be turned off.

55

56 Application Environment: Safe Robot Operation

	Preface
	Contents
	CHAPTER 1
	Introduction

	CHAPTER 2
	Basic Robot Components
	Robot
	Controller
	Robcomm3 Software
	Additional Information

	CHAPTER 3
	Peripheral Components
	Teach Pendant
	Gripper
	Extra Axes
	External Devices

	CHAPTER 4
	Robot Space and Motion
	Overview
	Cartesian Space, Locations, and Motion
	Rotational Space, Locations, and Motion
	Cylindrical Space and Motion
	Tool Space and Motion
	Base Offset
	Limp Motion

	CHAPTER 5
	Safe Robot Operation

