Application Development
UMI-R3-111

- c R S It’s all abour time

Application Development

Revision

Number History

001 First release. 99-07

i 99-07-13

Contents

(O 1 I = N 1
[T L dioTo [Tox u o] o VAP PP 1
(O VNl I = 2 T P P PP 3
TeaCh-First Method u ettt ettt ettt ettt ettt ettt eneeeaeaeieeeesasananeneaens 3
Tasks and Recommended TOOIS ...uiuiieiiieii it i et ieeeeteieinaneasanees. 4

Task 1) = 1 O T P P PP 6
Task 1.1 Start the COMPULET ...ttt e et ieeeeteaeisaneasanens. 6

Task 1.2 Start the ROBOTcuiuieiiiiiiiii et eeieeeneaas 6

Task 2 Create or Open an Applicationc.ccoveiieiiiiiiiiiiiiiiiieieaenens. 7
Task 3 Transform the TOOliiie i ieeaeeeieeaanannn, 8
Task 3.1 Determine the Tool Transformccoeveeieiiiiiiiieiiiiiineiennens. 8

Task 3.2 Setthe Tool TransforMo.iuii i eieiieeeeeeeeeaeaanan, 8

Task 4 Create and Teach LOCAtiONSiuiuiieiiieiii it itiiiieaeeeeieananeaanns 10
Task 4.1 Move the Arm to a New POSItioN......cccoieieieiniiiiiiiiiiieannenas 10

Task 4.2 Create a Location Variable........ccooiiiiiiiiiiiiiiiiiieieennns.s 11

Task 4.3 Teach a Value to the Location Variablecccceeieiennnnn..s 12

Task 4.4 ChecK the LOCAtiONciuieieiiitii it it iteieetaaeinaaeanaaeeneaees 12
) 1= = | PP 13

Task 5 Set Non-Location Variablesc.ociiiiiiiiiiiiiiiciiiieeieaieaeas 14
Task 5.1 Create a Non-Location Variableccoooiiiiiiiiiiiiiiiiiinnnn.s 14

Task 5.2 Set a Value to the Non-Location Variable......................... 15

Task 6 Write Your RAPL-3 Programc.ieieieieiiiiiieiaeaeesesasinananeenens, 16
RAPL 3 ProgrammMinNg TIPS cu e et ieie et iteeiseeaseeisaneasaeiseneasaneananens 16

Task 7 Send the Program to the Controller........cccoceeeiiiiinininininnn.ns 19
Task 8 RuUn Your AppPliCationi.eieieiieieiie ittt eteieieeieesaieinaneasanenss 20

(OF 9= o) (=] PP P P PP 21
N s S W\ 1= o o T Yo I P P PP 21
Tasks and Recommended TOOIS ...uiueieiiieiii it it et ieaeeteaeenaaeas 22

Task 1) = 1 A O IO PP 24
Task 1.1 Start the COMPULET .. ittt eeieeteieieeaeaneaeeneaeas 24

Task 1.2 Start the RODOTciiiiieiiiiiiiii e eeeeiee e enenananas 24

Task 2 Write Your RAPL-3 Programcceeieieeiiieiiieineaeiniaeaneaeaneaennss 25
RAPL 3 ProgramMing TIPS .. .u e et ie e ieisisenenttaeaeaeaeasessssneneneneaenss 25

Task 3 Send the Program to the Controller.........ocoiiiiiiiiiiiiiininnn... 27
Task 3.1 Set UpP the AP ettt ittt et iteeeaeaeaeaeaeasanananas 27

Task 3.2 Send Your Program to the Controllerccocoevviiiininennnn... 27

Task 4 Open the APPlICAtION ... v et et ieieeeeaananans 28
Task 5 Transform the Toolo iieeeeeeeaeaeaneasas 30
5.1 Determine the Tool Transformooeieiiiiiiiiii i iiiiieeieeaens 30

5.2 Setthe Tool TranS Oot ee et et et it ieaneeseeasaneaenns 30

Task 6 TEACH LOCAtIONS. .ttt ittt ittt ettt et it it eteetaeaeaeaeasanananas 32
Task 6.1 Review Your Location VariableS........c.ociiiiiiiiiiiiiinieinnne.s 32

Task 6.2 Move the Arm and Teach the Locationccccceeeeennnnnn.s 33

Task 6.3 Check the Accuracy of Your Locations

Task 7 Set Teachable Non-Location Variablesc.ocoviiiiiiieininen.ns 36
Task 7.1 Set Your Non-Location Variables........cccoiiiiiiiiiiiiiiiinnnns... 36
Task 8 [R{ETa Lo TUT - N o] o] ITof=\ o [o] o [N 37
iv 99-07-13

CHAPTER 1

Introduction

This Guide, Application Development, describes how to develop and run a
robot automation application using:

e teach pendant
e Robcomm3
e ash

For each task, one of the development tools is recommended. The task is
described using the recommended tool. In many cases, an alternative tool
can be used to accomplish the same task. Refer to the reference section of
that tool to use it for the task.

You can use one of two methods.

Teach-First Method

The teach-first chapter describes how to develop a simple application by
teaching locations first and then writing your program.

Use this method if you prefer a hands-on approach. Walk through your
application, moving the actual arm in the workcell, saving the locations,
and determining the order of robot work. Then write your program to
follow the order of work.

Write-First Method

The write-first chapter describes how to develop a simple application by
writing your program first and then teaching the locations.

Use this method if you prefer a large-scale design approach. Determine
the work of the robot. Write the program, adding sections until the
program until complete. Then, using the program'’s location names, teach
the locations with the arm.

You can use this method to get started on your application when you do
not yet have the robot installed to teach locations.

Application Development: Introduction

Teach-First or Write-First

Comparison of major steps for teach-first and write-first.

Teach-First

Write-First

transform tool

write & compile program

teach locations

send program

write & compile program

transform tool

send program

teach locations

run application

run application

CHAPTER 2

Teach-First Method

The teach-first method is useful for working out your application in the
workcell, moving the arm from one location to the next as you determine
the order of robot work. Once you have decided on the sequence of
motion, you can write your program. Using the teach-first method
requires that you have a robot, preferably with the end-of-arm tooling
(such as a gripper), to teach locations.

Application Development: Teach-First Method

Tasks and Recommended Tools

You can develop a simple robot application using the following sequence

of tasks with preferred tools or alternative tools.

Preferred Tools

The procedures on the following pages prefer these tools.

Tool

Task

Robcomm3

ash

Teach Pendant

1. Open

open application

2. Transform

set tool transform

3. Teach create location,
move arm
teach location,
check location
4. Set create other variables,
set values
5. Write write program,
compile program
6. Send send program to controller
7. Run run complete application

Application Development: Teach-First Method

Alternative Tools

If you want, or if your tool selection is limited, you can use either the
preferred tool (in bold) or the alternative tool.

Tool Robcomm3 ash Teach Pendant
Task
1. Open open application open application
2. Transform set tool transform
3. Teach create location, create location,
move arm, move arm,
teach location, teach location,
check location check location
4, Set create other variables, create other variables,
set values set values
5. Write write program,
compile program
6. Send send program to
controller
7. Run run complete application | run complete application

6 Application Development: Teach-First Method

Task 1 Start Up

The application development procedures in this chapter assume that the
system and necessary tools are started.

Task 1.1 Start the Computer

Before you begin, make sure that you have properly installed Robcomm3
and CROS-500C on the computer.

To start the computer and computer-based tools:
1. Turn on your computer.
2. Start Robcomma3.

3. If you are using Robcomma3 for the first time, make sure that the
communication setting (available from the C500 menu) matches the
communication port where you attached the cable between the
computer and the controller.

4. Open the terminal window. In Robcomm3, click the Terminal button,
or select Terminal from the C500 menu. With the controller not yet
powered on, the window is blank.

Task 1.2 Start the Robot

To start the robot system and the robot-based tools:

1. If you have a teach pendant, make sure that it is connected to the
controller. If not, remove the over-ride plug and connect the pendant.

2. Power on the controller at the main power switch on the front panel.
As the controller starts up, lines describing start up activity are
displayed at the terminal.

3. When the controller is finished its start up activity, check that the
terminal displays the $ (system shell) prompt. If the $ (system shell)
prompt does not appear automatically, press the Enter key.

Depending on the configuration in the controller, the pendant may or may
not be enabled.

Application Development: Teach-First Method 7

Task 2 Create or Open an Application

When developing your robot application, you create an application or
“app”, a place on the controller where you store your program and
locations. You can create this app with either ashor the teach pendant.

When you develop several robot applications, you create a separate app
for each one, keeping the program and locations for one application
separate from others.

When you create an app, ash or the teach pendant creates a sub-directory
in the app directory of CROS. When you teach locations, ash or the teach
pendant automatically stores your locations in that sub-directory. When
you send your program from the computer to the controller, Robcomm3
automatically sends your program to that sub-directory.

Preferred Tool

ash

Alternative Tool

Teach Pendant

Opening

If your robot system automatically started up the teach pendant, shut
down the teach pendant by pressing ESC on the teach pendant keypad
until you reach the terminate screen and press F1 to confirm.

To create or open an app using ash:

1. Start ash. At the $ prompt, enter
ash

2. The shell displays the message “Existing applications are:” and lists all
existing applications.

3. Open an application.
* To create a new application and open it:

a) Enter the name for your application. For example
dispense
my_app
The shell displays the message “Application application_name
not found -- try to create it?”

b) Enter y for yes. ashcreates the new application, displays a
number of messages, and displays a prompt with the
application name in it, such as
dispense>
my_app>
e To open an existing application:
a) Enter the name of the application. For example

dispense
my_app

The application shell displays a message and then a prompt

with the application name in it.

You are now ready to set the tool transform in Task 2.

8 Application Development: Teach-First Method

Task 3 Transform the Tool

A tool transform defines the tool center point (TCP). The tool center point
is the work-performing point of your end-of-arm tool, such as the center

of gripper fingers, the tip of an applicator, the center of a spray head, etc.
The tool transform specifies the position of the TCP relative to the center

of the tool flange.

A location is a point in space known to the robot. After you set a tool
transform, when you teach a location the point in space that is
remembered by the robot is the point of the TCP. When the robot moves,
it places the TCP at the location, for example, at the center of the nest, at
the point on the work-piece where material is applied, etc.

Task 3.1 Determine the Tool Transform

Determining a tool transform involves measuring the position and
orientation of the tool center point relative to center of the tool flange
surface. See examples and descriptions in Application Environment, the
next major part of this manual after Application Development.

To determine the transform:

1. Determine the point that will be the tool center point, for example: the
mid-point between the gripping spots of two fingers or a point a short
distance away from the tip of a dispenser.

2. Measure the distances along the X, Y, and Z axes of the tool co-
ordinate system. Remember: the tool co-ordinate system for the F3
has Z rising straight off the tool flange and the A465 and A255 have X
rising straight off the tool flange.

3. Determine the orientation, the rotations around the three axes, that
will be expressed as yaw, pitch, and roll. The design of most tools
involves no rotation, or rotation about only one axis. If this is the case,
all three, or two of the three, orientation co-ordinates are zero.

After accurately measuring, use ash to set the tool transform.

Task 3.2 Set the Tool Transform

Tool

ash

Alternative Tool

There is no alternative tool.

Setting Directly
To set the transform:

1. Set the tool transform using the tool command followed by your
specific tool parameters.

Example: A servo gripper with microplate fingers, in metric
tool 30, 0, 205, 0, 0, O

Application Development: Teach-First Method

2.

Check the transform by entering the tool command with no

parameters
tool

Setting Indirectly

To set the transform with values that can also be used in the program,
put the transform values in an array of floats. Use the array to set the
transform in ashfor teaching and to set the transform later when the
program runs.

1.

Create a new array of six floats named tran
new %tran[6]

The array is indexed from O to 5: tran[0], tran[1], tran[2], tran[3],
tran[4], tran[5].

Set each element of the array to one parameter of the tool transform
according to this order.

Variable Transform Parameter

tran[0] X-axis distance

tran[1] Y-axis distance

tran[2] Z-axis distance

tran[3] yaw rotation (around Z axis)
tran[4] pitch rotation (around Y axis)
tran[5] roll rotation (around X axis)

For example, for a servo gripper with microplate fingers, in metric, the
parameters are 30, O, 205, O, 0, O.

set tran[0] = 30
set tran[0] = 0
set tran[0] = 205
set tran[0] = 0
set tran[0] = 0
set tran[0] = 0

Check the settings with the print command
print tran

The values are now in the array elements. You now need to get the
array elements into the tool transform setting on the system.

Set the tool transform using the array
tool tran[0], tran[1], tran[2], tran[3], tran[4], tran[5]

Check the transform by entering the tool command with no

parameters
tool

10 Application Development: Teach-First Method

Task 4 Create and Teach Locations
Points in space become useable when they are taught as locations.

In the Teach-First method, teaching a location involves the following
sequence of tasks.

1. Move the arm to a new position.

2. Create a location variable.

3. Teach a value to a location variable.
4. Check the accuracy of the location.

The last task, checking the accuracy of the locations, is optional, but

recommended.
Warning! Use safe locations to avoid collisions. If you cannot easily move the arm
directly from one location to the next, teach additional safe locations that are out of the

way of obstructions. When you write your program, you can move the arm from one
work location to a safe location and then to the next work location.

Tip: Teaching exact locations can be time-consuming. To quickly develop
your application, you can teach approximate locations, perform a test
run, and later re-teach the accurate locations.

Task 4.1 Move the Arm to a New Position

Preferred Tool

Teach Pendant

Alternative Tool

ash

Moving

Use the teach pendant in Velocity-Joint motion to move the arm to
positions you want to teach. With Velocity type, motion continues while
you press the axis key, but stops when you release the key. With Joint
mode, you move each joint individually by pressing the axis keys.

1. At the controller front panel, turn on arm power by pressing the
button near the upper right corner. The LED in the button lights up.

2. Ensure that the teach pendant is running. If you have only been using

ashat the terminal window, start the teach pendant by entering
pendant

The pendant displays the Application screen with the name of the
application on the second line.

3. At the teach pendant, select Edit by pressing the F1 key.

4. Select Motion by pressing F3. The Manual Menu displays with Motion
Type (motn) available at F3 and Motion Mode (mode) available at F4.

5. Scroll through motion types by pressing F3. If you are a new user,
select Velocity (vel) for constant motion or Jog for incremental motion.

Application Development: Teach-First Method 11

6. Scroll through motion modes by pressing F4. If you are a new user,
select World to move along a world axis, Tool to move along a tool axis,
or Joint to move an individual joint.

7. Select a speed by pressing Speed Up and Speed Down. If you are a
new user, use a speed of 25% or slower.

8. Move the tool center point to your location using the teach pendant.
You can change motion type, motion mode, or speed, as needed.

* Squeeze the live-man switch on the right side of the teach
pendant, using adequate but not excessive pressure.

* Press an axis key to move in either a positive or negative direction.

e If arm power shuts off, turn it on by pressing the Arm Power
switch on the controller.

9. When the tool center point is at the position you want, you are ready
to create a location.

Task 4.2 Create a Location Variable

Preferred Tool

ash

Alternative Tool

Teach Pendant

Creating

Once the arm is positioned in your desired location, you can use the ash
New command to create a variable. This variable holds the location data
and is used in the application program.

Use a prefix character to specify the type of location variable you want to
use.

_ (underscore) a cartesian location (cloc)

(number sign) a precision location (ploc)

1. At the application prompt, enter
new prefix _characterlocation_name
For example:
new _pick
new #place
new _safe 1

2. Confirm that your location variable was created by entering
list
A list of variables created for the application is displayed. Your new
location name should be in the list with an asterisk, indicating that it
has not been taught.

If you created an incorrect type of variable or used an incorrect name,
delete the variable using the erase command.

Application Development: Teach-First Method

Task 4.3 Teach aValue to the Location Variable

Preferred Tool

ash

Alternative Tool

Teach Pendant

Teaching

Make sure that the tool center point is at the point you want to teach to
the variable.

To teach the location variable:

1. Enter
here [JTocation variable name

For example
here pick
here place
here safe 1

2. Confirm that the variable was taught by entering
list
The location displays without an asterisk, indicating that it has been
taught.

3. Check the positional data for the location variable by entering
print [location variable name
For example
print pick
print place
The location data displays, separated by commas and enclosed within
brackets.

If “unknown” is displayed, the data was not taught to the variable.

Task 4.4 Check the Location

Preferred Tool

ash

Alternative Tool

Teach Pendant

Checking

Once you have taught a location, you can check the accuracy of your
locations by moving the robot to the location. Although recommended,
this procedure is optional.

Warning! Start with a slow speed (speed 10) and be prepared to strike an e-stop
button to prevent a possible collision. When you enter a motion command, the arm
moves to the location and expects no obstructions in the way.

1. Set a slow speed. Enter
speed 10

Application Development: Teach-First Method 13

for 10% of full speed. The speed can be set from 1% to 100% of full
speed.

2. Move the arm to a position away from your location, such as the ready
position by entering
ready
or another suitable position where there is no possibility of collision
when the arm moves from the position to your location.

3. Approach the location with the appro command. The appro command
positions the arm near the location, but away from it at the distance

that you specify. Enter
appro [location variable name, distance

For example:

appro pick, 4

appro place,6
To place the arm closer to the location, you can specify a smaller
distance.

4. Move to the location with the move command. Enter
move Jocation variable name

For example:
move pick
move place
move safe 1

5. Depart from the location with the depart command. The depart
command positions the arm away from the location by the distance

that you specify. Enter
depart distance

For example:
depart 4

Repeat

Repeat the teaching tasks for each location.

14 Application Development: Teach-First Method

Task 5 Set Non-Location Variables
Types of non-location variables include:
e integer (a whole number, such as 0, 1, 9., 863)
e float (a number with a decimal point, such as 6.25, 1.755, 99.99)
e string (a group of characters, such as “Press F1 to start.”

Non-location variables can also be teachable. You can change their values
outside the program, the same way that you can change a teachable
location outside a program.

You can use teachable non-location variables to:
« set the number of re-tries of a particular operation

e change the value used in a calculation for the type of material used in
the application.

* modify a message sent to the terminal or teach pendant screen at a
point in the program

Task 5.1 Create a Non-Location Variable

Preferred Tool

ash

Alternative Tool

Teach Pendant

Creating

When you create a new teachable variable with ashyou use the new
command.

When you create the variable, you must specify the type of teachable
variable with a prefix character. Creating a variable without a prefix
character creates it as an integer.

Prefix Character ’ Creates

(no prefix character) integer number (int)
% (percentage sign) floating point number (float)
$ (dollar sign) string of characters (string)

1. At the application prompt, enter
new prefix _characterlocation _name
For example:
new cycle times
new %analysis_factor
new $error_message_5

2. Confirm that the non-location variable was created by entering
list
Your new variable name, if created, is displayed with an asterisk,
indicating that you have not yet taught it (set a value to it).

Application Development: Teach-First Method 15

If you created an incorrect type of variable or used an incorrect name, use
the erase command to delete it, and start over.

Task 5.2 Set aValue to the Non-Location Variable

Preferred Tool

ash

Alternative Tool

Teach Pendant

Setting

Once a variable exists, you can assign it a value or “set a value to the
variable”. When you set a value to a variable with ash, you use the set
command.

A value can either be a constant or another variable. Certain characters
can only be used with different types of variables, as shown in the
following table.

Variable Type | Allowable Value

int Positive or negative whole number. If unsigned, it is taken as
positive. (+5, -9, 7382, -9418)

float Positive or negative number with a decimal point. If unsigned,
it is taken as positive. (+2.75, -3.333, 827.0, -0.99)
string Letters (A, B, C, ..., Z,a,b, ¢, ..., 2), numerals (0, 1, 2, ..., 9),

blankspace, punctuation but not \ [the backslash character].

Characters for a string are written between double quotes
(“message”).

A string is a specific size and takes only as many characters
as its size allows. Extra characters are lost.

1. To review the names of variables, enter
list

2. At the application prompt, enter
set variable name = value
For example:
set cycle _times = 125
set x_increment = 1.33333
set error_message 5 = "Waiting for input.”
set number_of_loops number_of _samples

3. Use the print command to check that your variable was properly set.
Enter
print variable name

For example:
print cycle_times

16 Application Development: Teach-First Method

Task 6 Write Your RAPL-3 Program

Preferred Tool

Robcomm3

Alternative Tool

Plain text editor and command-line compiler

Writing

After teaching your locations, you can write and compile your RAPL-3
program using Robcomma3. Using specific commands and determining the

structure of a program is an extensive subject. Refer to the RAPL-3
Language Reference Guide for details.

In summary, to write a RAPL-3 program:
1. In Robcomm3, open an editor window by selecting File | New.

2. Save your program, using the Save As function, to the directory you
want. Use an appropriate file name, such as the same name as your
application. Make sure the extension is .r3.

3. Setup an Application. From Application, select New. Name your app
using the same name as your program file.

4. Check the settings in the App Setup. From Application, select Setup.
Make sure that the source file name is the same as your program, the
object file name is the same, and the directory name on the controller
is the same as the one you used when you taught your locations.

5. In the Editor window, type your program.
6. Compile your program (from source file to object file).

7. Continue adding material to your program. Continue de-bugging your
program after attempts to compile.

RAPL 3 Programming Tips

To ensure that your RAPL-3 program integrates properly into your
application:

Keep file names the same

With standard applications, use the same name for: the application, the
program in source format and compiled object format, and the variable
file. For example, if, at the terminal, you created an application named
“dispense”, save your program file as “dispense.r3”. When you set up to
compile, use the same name. On the controller, when you taught your
locations, ash automatically placed the variables in a file named
“dispense.v3”.

Location Computer Controller ‘

Application Development: Teach-First Method 17

Entity

application dispense
(name in ash, sub-directory in \app)

application dispense.app
(name in Robcomm New App)

source file dispense.r3
(program in readable RAPL-3)

object file dispense. dispense.
(program in compiled form)

variable file dispense.v3
(file with teachables)

Use the same variable names

When you write locations into your program, ensure that you use the
same names that you used when you created and taught them in ash.
The names must match or the taught values will not be used in the
program.

Note: To display all the location and other teachable variable names in
your application, use the list command.

Make your variables teachable

For variables that you taught in ashdeclare these variables in your
program as “teachable”. This allows your program to use values in the
variable (.v3) file that are external to the program. If a variable is not
declared as teachable, its value can exist only within the program.

To declare a teachable variable, precede the variable name with
"teachable" along with type of variable (cloc, ploc, int, float, string). For a
string, also include the length of the string in square brackets. For

example:
teachable cloc pick, place, safe 1, safe 2
teachable iInt cycles
teachable string[64] message wait, message go

Warning! Use safe locations to avoid collisions. If you cannot move the arm
directly from one location to the next without obstruction, then you must include
additional safe locations in your program out of the way of obstructions. Your
program can move the arm from one work location to a safe location and then to
the next work location.

Include a tool transform

In earlier tasks, you set a tool transform and then taught locations. As a
result, the locations stored in the controller are locations for the tool
center point, not for the tool flange of the arm. If you do not include a tool
transform in your program, you will have serious collisions. The controller
will start up. There will be no transform set. The robot will move to place
the arm’s tool flange at the location. This will drive the tool through the
nest or work-piece.

18

Application Development: Teach-First Method

If you created an array of floats to use when teaching in ash and to use in

your program when running, write the array into the tool_set() command.
For example, tool_set(tran)

Application Development: Teach-First Method 19

Task 7 Send the Program to the Controller

Tool

Robcomm3

Alternative Tool

There is no alternative tool.

Sending

You have written and compiled your program on the computer. You must
send it to the controller, to use it to run the robot.

With Robcomma3, the procedure for transferring your program to the
controller is simplified if you use the App Setup feature described in the
previous task.

1. Send the program using the Send function available from the Send
button, Application menu, or right-mouse click menu. The Send File
Transfer Progress window displays the transfer.

2. Check that your program was successfully transferred to the
appropriate place. In the terminal window, with ash running and your
application open, display the contents with the dir command.

20 Application Development: Teach-First Method

Task 8 Run Your Application

Preferred Tool

ash

Alternative Tool

Teach Pendant

Running

To run your application using ash:

1. At the controller front panel, switch Arm Power on. The LED in the
switch button lights up.

2. Move the arm to a safe position.

motion. The program moves the arm directly from one location to the next

& Warning! Be prepared to strike an emergency-stop button to stop arm
and expects no obstructions.

3. At the application prompt, enter
run

Using the run command without any parameters runs the program
file and variable file with the same name as the open application.

21

CHAPTER 2

Write-First Method

Use the Write-First method of application development if you are
comfortable with writing programs, or if you do not have a robot available
to teach the robot locations first.

Using this method, you develop your application by working out the flow
of robot tasks as you write the program and name locations. After you
compile and send your program to the controller, a utility in ash
automatically creates a variable file containing all teachable variables with
the names you used in your program. Then, you can teach the locations
with the robot arm.

22

Application Development: Write-First Method

Tasks and Recommended Tools

You can develop a simple robot application using the following sequence

of tasks with preferred tools or alternative tools.

Preferred Tools

The procedures on the following pages prefer these tools.

Tool Robcomm3 ash Teach Pendant
Task
1. Write write program,
compile program
2. Send send program to controller
3. Open open application

4. Transform

set tool transform

5. Teach move arm
teach location,
check location

6. Set set values to other
variables

7. Run run application

Application Development: Write-First Method

Alternative Tools

If you want, or if your tool selection is limited, you can use either the

preferred tool (in bold) or the alternative tool.

Tool Robcomm3 ash Teach Pendant
Task
1. Write write program,
compile program
2. Send send program to controller
3. Open open application open application

4. Transform

set tool transform

5. Teach review locations review locations
move arm, move arm,
teach location, teach location,
check location check location

6. Set set values to other set values to other
variables variables

7. Run run application run application

24 Application Development: Write-First Method

Task 1 Start Up

The application development procedures in this chapter assume that the
system and necessary tools are started.

Task 1.1 Start the Computer

Before you begin, make sure that you have properly installed Robcomm3
and CROS-500C on the computer.

To start the computer and computer-based tools:

1.
2.

Turn on your computer.

Start Robcomma3. (If you are away from the robot, or are going to
spend considerable time writing and de-bugging your program, stop
here, complete the writing task, and when you are ready for the
remaining tasks, continue this start up.)

If you are using Robcomma3 for the first time, make sure that the
communication setting (available from the C500 menu) matches the
communication port where you attached the cable between the
computer and the controller.

Open the terminal window. In Robcomm3, click the Terminal button,
or select Terminal from the C500 menu. With the controller not yet
powered on, the window is blank.

Task 1.2 Start the Robot

To start the robot system and the robot-based tools:

1.

If you have a teach pendant, make sure that it is connected to the
controller. If not, remove the over-ride plug and connect the pendant.

Power on the controller at the main power switch on the front panel.
As the controller starts up, lines describing start up activity are
displayed at the terminal.

When the controller is finished its start up activity, check that the
terminal displays the $ (system shell) prompt. If the $ (system shell)
prompt does not appear automatically, press the Enter key.

Depending on the configuration in the controller, the pendant may or may
not be enabled.

Application Development: Write-First Method 25

Task 2 Write Your RAPL-3 Program

Preferred Tool

Robcomm3

Alternative Tool
Plain text editor and command-line compiler
Writing

Write and compile your RAPL-3 program using Robcomm3. Using specific
commands and determining the structure of a program is an extensive
subject. Refer to the RAPL-3 Language Reference Guide for details.

In summary, to write a RAPL-3 program:
1. In Robcomm3, open an editor window by selecting File | New.

2. Save your program, using the Save As function, to the directory you
want. Use an appropriate file name, such as the same name as your
application. Make sure the extension is .r3.

3. Setup an Application. From Application, select New. Name your app
using the same name as your program file.

4. Check the settings in the App Setup by selecting Setup from
Application. Make sure that the source file name is the same as your
program and the object file name is the same.

5. In the Editor window, type your program.
6. Compile your program (from source file to object file).

7. Continue adding material to your program. Continue de-bugging your
program after attempts to compile.

RAPL 3 Programming Tips

To ensure that your RAPL-3 program integrates properly into your
application:

Keep file names the same

With standard applications, use the same name for: the program in
source format and compiled object format and for the app.

Entity Name

application dispense.app
(name in Robcomm New App)

source file dispense.r3
(program in readable RAPL-3)

object file dispense.
(program in compiled form)

26

Application Development: Write-First Method

Make your variables teachable

For variables that you want to teach on the controller (usually all
locations and some non-location variables) declare these variables as
“teachable”. This allows your program to use values stored on the
controller. If a variable is not declared as teachable, its value can exist
only within the program.

To declare a teachable variable, precede the variable name with
"teachable" along with type of variable (cloc, ploc, int, float, string). For a
string, also include the length of the string in square brackets. For

example:
teachable cloc pick, place, safe 1, safe 2
teachable iInt cycles
teachable string[64] message wait, message go

Use safe locations

If the arm will not be able to move directly from one location to the next
without obstruction, include additional safe locations, out of the way of
obstructions. Your program can move the arm from one work location to a
safe location and then to the next work location.

Include a tool transform
You have options.

e Determine the tool transform detailed in Transforming the Tool. In the
program, use these constants (“hard-code” the parameters) in the
tool_set() command.

* In the program, declare a teachable array of floats and use the array
in the tool_set() command. Work out the other details when you are
teaching locations with the arm. Determine the tool transform. Using
those parameters, set values to the array of floats that will be used
when the program runs. Using the same parameters, set a tool
transform in ash that will be used when teaching.

Application Development: Write-First Method 27

Task 3 Send the Program to the Controller

Tool

Robcomm3

Alternative Tool

There is no alternative tool.

Sending

You have written and compiled your program on the computer. You must
send it to the controller.

With Robcomma3, the procedure for transferring your program to the
controller is simplified if you use the App Setup feature.

Task 3.1 Set Up the App

When you set up the app for compiling from source file to object file, you
may have set up for sending from the computer to the controller.

1. Make sure that the app is open.

* If you have been writing and compiling, you likely have the app
open. From the Application menu, New App and Open App are
disabled. Check which app is open by selecting Setup. If the wrong
app is open, close it by selecting Close App.

e If you do not have the app open, or re-started Robcomm3 since
writing and compiling, open the app. From the Application menu,
select Open App. At the selection window, select the proper app.

2. Check the settings in the App Setup. From Application, select Setup.
Make sure that the sub-directory on the controller is where you want
to send the program. With a standard application, the sub-directory
name has the same name as the program file.

Task 3.2 Send Your Program to the Controller

Details of sending the program are handled automatically if you have set
up the app. Otherwise you have to use the File Transfer utility.

1. Send the program using the Send function available from the Send
button, the Application menu, or the right-mouse click menu.

2. Check that your program was successfully transferred to the
appropriate place. In the terminal window, from the system shell, use
the dir command

dir \app\application_name

for example
dir \app\dispense

The program file in compiled object format does not have a .r3
extension.

28 Application Development: Write-First Method

Task 4 Open the Application

When developing your robot application, you use an application or “app”,
a place on the controller where you store your program and locations.

When you develop several robot applications, you use a separate app for
each one, keeping the program and locations for one application separate
from others.

An app is really a sub-directory in the app directory of CROS. When you
sent your program from the computer to the controller, Robcomm3
automatically sent it to that sub-directory. When you teach locations, ash
or the teach pendant automatically stores your locations in that sub-
directory.

Preferred Tool

ash

Alternative Tool

Teach Pendant

Opening

If you sent the program automatically with the App Setup feature, the
application on the controller was automatically created. You only have to
open it.

1. Startash. At the $ prompt, enter
ash

2. The shell displays the message “Existing applications are:” and lists all
existing applications.

3. Open the application.
» If the application that you want already exists:

a) Enter the name of the application. For example
dispense
my_app
The application shell displays a message and then a prompt
with the application name in it.

e To create a new application and open it:

a) Enter the name for your application. For example
dispense
my_app
The shell displays the message “Application application_name
not found -- try to create it?”

b) Enter y for yes. Ash creates the new application, displays a
number of messages, and displays a prompt with the

application name in it, such as
dispense>
my_app=>

c) Search for your program file. Since the application did not
already exist when you started ash, the application was not
created in the proper place and your file did not go to the
proper place when you sent the file. Either use system shell

Application Development: Write-First Method 29

commands to search directories and move your program to
this app directory, or re-send the file after re-checking the app
setup in Robcomma3.

You are now ready to set the tool transform in Task 2.

30 Application Development: Write-First Method

Task 5 Transform the Tool

A tool transform defines the tool center point (TCP). The tool center point
is the work-performing point of your end-of-arm tool, such as the center

of gripper fingers, the tip of an applicator, the center of a spray head, etc.
The tool transform specifies the position of the TCP relative to the center

of the tool flange.

A location is a point in space known to the robot. After you set a tool
transform, when you teach a location the point in space that is
remembered by the robot is the point of the TCP. When the robot moves,
it places the TCP at the location, for example, at the center of the nest, at
the point on the work-piece where material is applied, etc.

5.1 Determine the Tool Transform

Determining a tool transform involves measuring the position and
orientation of the tool center point relative to center of the tool flange
surface. See examples and descriptions in Application Environment.

To determine the transform:

1. Determine the point that will be the tool center point, for example: the
mid-point between the gripping spots of two fingers or a point a short
distance away from the tip of a dispenser.

2. Measure the distances along the X, Y, and Z axes of the tool co-
ordinate system. Remember: the tool co-ordinate system for the F3
has Z rising straight off the tool flange and the A465 and A255 have X
rising straight off the tool flange.

3. Determine the orientation, the rotations around the three axes, that
will be expressed as yaw, pitch, and roll. The design of most tools
involves no rotation, or rotation about only one axis. If this is the case,
all three, or two of the three, orientation co-ordinates are zero.

After accurately measuring, use ash to set the tool transform.

5.2 Set the Tool Transform

Tool

ash

Alternative Tool

There is no alternative tool.

Setting Directly
To set the transform:

1. Set the tool transform using the tool command followed by your
specific tool parameters.

Example: A servo gripper with microplate fingers, in metric
tool 30, 0, 205, 0, 0, O

Application Development: Write-First Method 31

2. Check the transform by entering the tool command with no

parameters
tool

Setting Indirectly

To set the transform with values that can also be used in the program,
put the transform values in an array of floats. Use the array to set the
transform in ash for teaching and to set the transform later when the

program runs.

1. Create a new array of six floats named tran
new %tran[6]

The array is indexed from O to 5: tran[0], tran[1], tran[2], tran[3],
tran[4], tran[5].

2. Set each element of the array to one parameter of the tool transform
according to this order.

Variable Transform Parameter

tran[0] X-axis distance

tran[1] Y-axis distance

tran[2] Z-axis distance

tran[3] yaw rotation (around Z axis)
tran[4] pitch rotation (around Y axis)
tran[5] roll rotation (around X axis)

For example, for a servo gripper with microplate fingers, in metric, the
parameters are 30, O, 205, O, 0, O.

set tran[0] = 30
set tran[0] = 0
set tran[0] = 205
set tran[0] = 0
set tran[0] = 0
set tran[0] = 0

3. Check the settings with the print command
print tran

The values are now in the array elements. You now need to get the
array elements into the tool transform setting on the system.

4. Set the tool transform using the array
tool tran[0], tran[1], tran[2], tran[3], tran[4], tran[5]

5. Check the transform by entering the tool command with no

parameters
tool

Application Development: Write-First Method

Task 6

Teach Locations

When you wrote your program, you declared some teachable locations.
You sent the program to the controller. A utility of ash adds the
teachables into the variable file and loads them into the ash database.

In the Write-First method, teaching a location involves the following
sequence of tasks.

1. Review your location variables.

2. Move the arm to a new position.

3. Teach the value into the location variable.
4. Check the accuracy of the location.

The last task is optional, but recommended.

Task 6.1 Review Your Location Variables
Tool

ashAlternative Tool

Teach pendant

Reviewing

When you opened the application (when you started ash with the ash
command at the terminal) the teachable variables from your program
were copied into a variable file and loaded into the ash database. Check
that this happened. If not, there are corrective steps.

1. At the ash prompt (the name of your application with an angle
bracket) such as
application_name>
list the teachable variables in the database with the list command
list
The variables from the database are displayed at the terminal.

2. Compare the list of variables to your knowledge of the program.

Troubleshooting

If there are no variables listed, the utility that generates the variables may

not have run successfully. Run it now to generate the variables from the
program using the refresh command.

1. At the prompt, enter
refresh

A line for each variable (added from the program to the variable file) is

displayed.

2. Check that they are in the database by entering
list
The variables should be displayed.

If the refresh command did not generate variables, the program file may
not be in the directory.

1. Search for your program file, using system shell commands. List all

Application Development: Write-First Method 33

contents of all directories (with the —Recursive flag), starting from the
root directory (/), by entering

dir -R /
All directories, sub-directories, etc. down to each file, are listed.

2. Look for your file by name. If you locate it, more it with the file move
command
mv current_file_location preferred_file_location
for example
mv /dispense /app/dispense/dispense

If the file is not on the controller, you need to send it.

1. In Robcomm3, check that the Open App feature is open and that the
App Setup configuration is set to send your object file to the proper
application directory on the controller, for example

/app/dispense
/app/spray

2. From Robcomma3, send your file with the Send feature available from
the right-mouse click menu, the Send button, or Send command from
the drop-down menu.

3. Check that your file is in the proper app directory on the controller. In
the terminal window, at the application prompt enter
dir
4. At the prompt, enter
refresh
A line for each variable (added from the program to the variable file) is
displayed.

5. Check that they are in the database by entering
list
The variables should be displayed.

Task 6.2 Move the Arm and Teach the Location

Tool

Teach pendant

Alternative Tool

ash

Moving and Teaching

To teach a variable from the teach pendant, you select the variable you
want to teach, move the robot to the position you want, and then enter
the teach command. Use the teach pendant in "Joint-Velocity" mode to
move the arm to a position. In joint mode you move each joint individually
by pressing the axis keys. Velocity motion means that the axis continues
to move but stops when you release the key.

Before you begin:

» Pass point of control to the teach pendant by entering the pendant
command at the terminal.

34

App

lication Development: Write-First Method

Ensure the application you created is active at the teach pendant.

Ensure that the robot is homed.

To teach a location variable:

1.

8.

Select the variable you want to teach. At the variable find screen,
locate and select the location variable you want to teach, and press
the F1(sel) key to select the variable. The manual menu screen opens.

Press F4 repeatedly until you select Joint mode.
Press F3 repeatedly until you select Velocity motion.
Select a speed, press Speed Up or Speed Down.

Tip: New users should use a speed of 25% or slower.

At the controller front panel, turn on Arm Power. The LED in the
switch button lights up.

Squeeze the live-man switch on the right side of the teach pendant,
using adequate but not excessive pressure.

a) Press an axis key to move a joint in either its positive or negative
direction.

b) Release the key to stop arm motion.

c) If arm power shuts off, turn it on by pressing the arm power
switch.

Note: The live-man switch on the teach pendant must be squeezed in
order to move the robot.

To move the arm to your desired location:
a) Move joints 1, 2, or 3 to position the arm near the location.
b) Move wrist joints 4, 5, and 6 for wrist orientation.

c) Continue to move the arm with the different axis keys until the
arm is at the position you want.

Tip: Teaching exact locations can be time-consuming for new users.
Teach locations roughly, perform a test run, and then later re-teach
the locations exactly.

When the robot is positioned, press the F1(tch) key to teach the
location.

If you teach the data to the wrong location variable, position the arm
and then re-teach the location. New location data replaces the existing
data in the variable.

Task 6.3 Check the Accuracy of Your Locations

Tool

ash

Alternative Tool

Teach pendant

Application Development: Write-First Method 35

Once you have taught and saved several locations, check the accuracy of

your locations at different speeds. Although recommended, this procedure
is optional.

Warning! Start with a slow speed and be prepared to strike an e-stop button
to prevent a possible collision. When you enter a motion command, the arm
moves to the location and expects no obstruction.

1. Set a slow speed, enter speed 10.
Note: The speed ranges from 1% to 100% of full speed.

2. Use the following procedure to check the accuracy of each of your
locations:

a) Use the appro command to approach the location. The appro
command positions the arm near the location, at the distance you
specify.

Enter

appro location variable name , distance
For example:

appro pick,4

appro place,6

Note: To place the arm closer to the location, you can specify a
smaller number.

b) Use the Move command to position the arm at an exact location.

Enter

move location variable name
For example:

move pick

move place

move safe 1

c) Use the depart command to depart from the location. The depart
command positions the arm away from the location at a distance
you specify.

Enter
depart distance

For example:
depart 4

Note: To use the depart command, the arm must be at a location,
not at a depart or appro position.

3. If the arm is moving without obstruction, increase the speed in step 1
and repeat step 2 until you find an appropriate speed in which to run
your application.

36 Application Development: Write-First Method

Task 7 Set Teachable Non-Location Variables

If you declared teachable non-location variables in your program, use the
following procedure to set a value to a variable.

Task 7.1 SetYour Non-Location Variables

Tool

ash

Alternative Tool

Teach pendant

Setting

Once a variable exists, you can assign it a value or “set a value to the
variable”. When you set a value to a variable with ash, you use the set
command.

A value can either be a constant or another variable. Certain characters
can only be used with different types of variables, as shown in the
following table.

Variable Type ’ Allowable Value

int Positive or negative whole number. If unsigned, it is taken as
positive. (+5, -9, 7382, -9418)

float Positive or negative number with a decimal point. If unsigned,
it is taken as positive. (+2.75, -3.333, 827.0, -0.99)
string Letters (A, B, C, ..., Z,a,b, ¢, ..., 2), numerals (0, 1, 2, ..., 9),

blankspace, punctuation but not \ [the backslash character].

Characters for a string are written between double quotes
(“message”).

A string is a specific size and takes only as many characters
as its size allows. Extra characters are lost.

4. To review the names of variables, enter
list

5. At the application prompt, enter
set variable name = value
For example:
set cycle_times = 125
set x_increment = 1.33333
set error_message 5 = "Waiting for input.”
set number_of_ loops number_of samples

6. Use the print command to check that your variable was properly set.
Enter
print variable name

For example:
print cycle_times

Application Development: Write-First Method 37

Task 8 Run Your Application

Preferred Tool

ash

Alternative Tool

Teach Pendant

Running

When you run your application, the controller executes your program
using the variable file containing your taught locations.

To run your application using ash:

1. At the controller front panel, switch Arm Power on. The LED in the
switch button lights up.

2. Move the arm to a safe position.

motion. The program moves the arm directly from one location to the next

& Warning! Be prepared to strike an emergency-stop button to stop arm
and expects no obstructions.

3. At the application prompt, enter
run

Using the run command without any parameters runs the program
file and variable file with the same name as the open application.

38

Application Development:

	Preface
	Contents
	CHAPTER 1
	Introduction

	CHAPTER 2
	Teach-First Method
	Task 1 Start Up
	Task 2 Create or Open an Application
	Task 3 Transform the Tool
	Task 4 Create and Teach Locations
	Task 5 Set Non-Location Variables
	Task 6 Write Your RAPL-3 Program
	Task 7 Send the Program to the Controller
	Task 8 Run Your Application

	CHAPTER 2
	Write-First Method
	Task 1 Start Up
	Task 2 Write Your RAPL-3 Program
	Task 3 Send the Program to the Controller
	Task 4 Open the Application
	Task 5 Transform the Tool
	Task 6 Teach Locations
	Task 7 Set Teachable Non-Location Variables
	Task 8 Run Your Application

